Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, \(\left|3-2x\right|=4x+1\)
Với \(x\le\frac{3}{2}\)pt có dạng : \(3-2x=4x+1\Leftrightarrow-6x=-2\Leftrightarrow x=\frac{1}{3}\)( tm )
Với \(x>\frac{3}{2}\)pt có dạng : \(3-2x=-4x-1\Leftrightarrow2x=-4\Leftrightarrow x=-2\)( ktm )
Vậy tập nghiệm của phương trình là S = { 1/ }
b, \(\left|3-5x\right|=2x+1\)
Với \(x\le\frac{3}{5}\)pt có dạng : \(3-5x=2x+1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)( tm )
Với \(x>\frac{3}{5}\)pt có dạng : \(3-5x=-2x-1\Leftrightarrow-3x=-4\Leftrightarrow x=\frac{4}{3}\)( tm )
Vậy tập nghiệm của phương trình là S = { 2/7 ; 4/3 }
Câu 2 :
\(2021-13m\)và \(2020-13n\)
Ta có : \(m< n\Rightarrow-13m>-13n\Leftrightarrow-13n+2021>-13n+2020\)
Câu 2.
Quãng đường sau 15' của 40km/h =(15/60) x 40=10km.
Thời gian từ lúc gặp nhau đếu lúc ô tô bắt đầu từ A =>B : (10/50)+(15/60) =0.45 h.
Vậy ta có phương trình : (tôi 0 biết cái phương trình này diễn đạt sao cả , chỉ biết là nó đúng !)
0.45*40+10+40*t=50*t
t=2.8
=> Quãng đường xe máy đi từ đầu đến thời điểm cách B 20 km =2,8 x 50=140 km,
S AB = 140+20= 160km
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)
\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)
đổi `40` phút `=2/3` giờ
gọi độ dài quãng đường AB là:`x` (đơn vị: km, x>0)
`=>` thời gian ô tô lúc đi là : `x/50` (giờ)
vận tốc lúc về là: `50-20=30` (km/h)
`=>` thời gian ô tô lúc về là: `x/30` (giờ)
vì thời gian về nhiều hơn thời gian đi là 40 phút nên ta có pt sau
`x/30-x/50=2/3`
`<=>x(1/30-1/50)=2/3`
`<=>x*1/75=2/3`
`<=>x=50(tm)`
vậy độ dài quãng đường AB là: 50km
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2
=> 5x=4(x+2)
=>5x-4x=8
=>x=8(tmđk)