Trong không gian, cho hai điểm phân biệt A, B cố định. Xét điểm M di động luôn nhìn đoạn AB dưới một góc vuông. Hỏi điểm M thuộc mặt nào trong các mặt sau?
A. Mặt trụ.
B. Mặt nón.
C. Mặt cầu.
D. Mặt phẳng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇔ x - 1 2 + y - 1 2 + z - 1 2 = 12 1 12 + x - a 2 + y - b 2 + z - c 2 = a - 1 2 + b - 1 2 + c - 1 2 2 a - 2 b + 2 c + 11 = 0 3
Chọn A
Ta có M(4;6;3) nằm trên mặt cầu (S) tâm I(1;2;3) bán kính R =5.
Dựng hình hộp chữ nhật nội tiếp hình cầu, có ba cạnh làMA, MB, MC
Ta có tâm I(1;2;3) của mặt cầu cũng là tâm của hình hộp chữ nhật
Gọi O là tâm đường tròn ngoại tiếp tứ giác MAFC
Trong mặt phẳng (MBF)
Do H là trọng tâm của tam giác MBF nên MH= 2 3 MI
Do I, M cố định nên H cố định (2)
Từ (1) và (2) Suy ra (ABC) luôn đi qua điểm cố định H.
Ta được
Đáp án B
Phương pháp:
+) Gọi M(x;y;z) tọa độ các véc tơ A M → , B M →
+) Gọi H, K lần lượt là hình chiếu của A,B lên ( α ) , có AMH = BMK
+) Tính sin các góc AMH = BMK và suy ra đẳng thức. Tìm quỹ tích điểm M là một đường tròn.
+) Tính tâm của đường tròn quỹ tích đó.
Cách giải:
Gọi M(x;y;z)
Gọi H, K lần lượt là hình chiếu của A, B lên ( α ) có AMH = BMK
= 3
Khi đó
Suy ra
Vậy M ∈ (C) là giao tuyến của ( α ) và (S). Tâm K của (C) là hình chiếu của
I 10 3 ; 34 3 ; - 34 3 trên mặt phẳng ( α ) .
Phương trình đương thẳng đi qua I và vuông góc với ( α ) có dạng
Đáp án C
Cách giải:
M di động luôn nhìn đoạn AB dưới một góc vuông ⇒ M thuộc mặt cầu có một đường kính là AB.