Tìm số tự nhiên sao cho 4n -5 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}
-3 sẽ chia hết cho 2n-1 nên 2n-1 thuộc (-3,-1,1,3)
Mình chỉ gợi ý tới đây thôi nha
Có \(4n-5⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Do \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(-3\right)\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
Ta có bảng sau :
\(2n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(1\) | \(0\) | \(2\) | \(-1\) |
4n + 3 = 4n + 2 + 1 = 2(2n + 1) + 1 .: 2n + 1 nên 1 .: 2n + 1 => 2n + 1 = 1 => n = 0
\(4n+9⋮2n-1\)
\(\Rightarrow4n-2+11⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)+11⋮2n-1\)
\(\Rightarrow11⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(11\right)\)
Mà n là số tự nhiên \(\Rightarrow2n-1\ge-1\)
\(\Rightarrow2n-1=\left\{-1;1;11\right\}\)
\(\Rightarrow n=\left\{0;1;6\right\}\)
4n-5 chia hết cho 2n-1 thì 2n-1 chia hết cho 2n-1
Ta có: (4n-5)-2.(2n-1)
= (4n-5)-(4n-2)
=4n-5-4n+4
=-1
Vậy Ư(-1)=2n-1
Mà Ư(-1)={-1;1} nên 2n-1=1
2n-1=1
2n=1+1
2n=2
n=2:2=1
Vậy n=1
n=1 sai đấy bạn ơi nếu n=1
thì [41-5]:[21-1]=36:21=? có chia hết đâu bạn n=1 là sai