Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MQN\) và \(\Delta PNQ\) có:
\(\widehat{NQP}=\widehat{MNQ}\) (Vì \(MN//PQ\) nên đó là hai góc so le trong)
\(\widehat{MQN}=\widehat{QNP}\) ( Vì \(MQ//NP\) nên hai góc đó là góc so le trong)
\(QN\) là cạnh chung
\(\Rightarrow\Delta MQN=\Delta PNQ\left(g-c-g\right)\)
a) Do △MQN=△PNQ nên
\(\Rightarrow MN=PQ\) (2 cạnh tương ứng)
b) Do △MQN=△PNQ nên
\(\Rightarrow MQ=NP\) (2 cạnh tương ứng)
a: Xét tứ giác MQAP có
MQ//AP
MP//AQ
Do đó: MQAP là hình bình hành
Theo tính chất: Hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường, ta suy ra I là trung điểm của NQ và MP.
Xét tam giác MQN có I là trung điểm NQ, IE // MN nên IE là đường trung bình tam giác.
Vậy nên IE = MN/2
Tương tự IF là đường trung bình tam giác ANP nên IF = MN/2
Vậy nên IE = IF hay I là trung điểm EF.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC
mn và pq
TL
đang thi hay làm bài kiểm tra mà cỏ đỉm vậy :)
HT