Tìm giá trị lớn nhất của các biểu thức sau A = 12a – 4 a 2 + 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
a) \(A=-\left|x+\frac{3}{4}\right|-3\)
Vì \(\left|x+\frac{3}{4}\right|\ge0\Rightarrow-\left|x+\frac{3}{4}\right|\le0\Rightarrow A=-\left|x+\frac{3}{4}\right|-3\le-3\)
=>\(A_{max}=-3\)=> \(\left|x+\frac{3}{4}\right|=0\Rightarrow x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy Amax = -3 khi x=-3/4
b) \(B=2-\left(x+\frac{5}{6}\right)^2\)
Vì \(\left(x+\frac{5}{6}\right)^2\ge0\Rightarrow B=2-\left(x+\frac{5}{6}\right)^2\le2\)
=>\(B_{max}=2\Rightarrow\left(x+\frac{5}{6}\right)^2=0\Rightarrow x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Bmax=2 khi x=-5/6
ta có: (y^2 -25) ^4 >= 0
suy ra -2*(y^2 -25) ^4 <=0
suy ra -2*(y^2 -25) ^4+ 10 <=10
vậy GTLN là 10 khi y^2 =25 <=> y=+-5
\(A=10-2\left(y^2-25\right)^4\)
\(=10-2\left[\left(y^2-25\right)^2\right]^2\)
Ta có : \(\left(y^2-25\right)^2\ge0\forall y\)
=> \(\left[\left(y^2-25\right)^2\right]^2\ge0\forall y\)
=> \(-2\left[\left(y^2-25\right)^2\right]^2\le0\forall y\)
=> \(10-2\left[\left(y^2-25\right)^2\right]^2\le10\)
Dấu = xảy ra <=> \(10-2\left[\left(y^2-25\right)^2\right]^2=10\)
<=> \(y^2-25=0\)
<=> \(y^2=25\)
<=> \(\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Vậy MaxA = 10 với y = \(\pm\)5
Ta có A = 12 – ( 2 a – 3 ) 2 ≤ 12 ∀ a Þ Amax = 12 Û a = 3 2 .