K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
4
Các câu hỏi dưới đây có thể giống với câu hỏi trên
21 tháng 7 2021
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
TH
1
AH
Akai Haruma
Giáo viên
14 tháng 7 2021
Biểu thức A bạn coi lại đề, không thể tính GTNN.
Biểu thức B thì làm như sau:
$|x+2|\geq 0$ với mọi $x$
$(x+y)^4\geq 0$ với $x,y$
$\Rightarrow B=|x+2|+(x+y)^4+2020\geq 2020$
Vậy GTNN của $B$ là $2020$
Giá trị này đạt tại $x+2=x+y=0$
$\Leftrightarrow x=-2; y=2$
ta có: (y^2 -25) ^4 >= 0
suy ra -2*(y^2 -25) ^4 <=0
suy ra -2*(y^2 -25) ^4+ 10 <=10
vậy GTLN là 10 khi y^2 =25 <=> y=+-5
\(A=10-2\left(y^2-25\right)^4\)
\(=10-2\left[\left(y^2-25\right)^2\right]^2\)
Ta có : \(\left(y^2-25\right)^2\ge0\forall y\)
=> \(\left[\left(y^2-25\right)^2\right]^2\ge0\forall y\)
=> \(-2\left[\left(y^2-25\right)^2\right]^2\le0\forall y\)
=> \(10-2\left[\left(y^2-25\right)^2\right]^2\le10\)
Dấu = xảy ra <=> \(10-2\left[\left(y^2-25\right)^2\right]^2=10\)
<=> \(y^2-25=0\)
<=> \(y^2=25\)
<=> \(\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Vậy MaxA = 10 với y = \(\pm\)5