Cho tam giác ABC cân tại A. Trên AB lấy điểm D , trên BC lấy điểm E sao cho DE//BC ; trên BC lấy điểm I sao cho DI//AC
a) Chứng minh DB=DI=EC
b) Trên tja đối của CA lấy điểm F sao cho CF=CE . Gọi K là giao điểm của DF và BC . Chứng mjnh: DK=KF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD=AE.
=>tg ADE cân tại A.
Vậy, suy ra: góc ADE= góc ABC(vì cả 2 tg đều cân tại A nên các góc ở đáy bằng nhau).
Mà góc ADE và góc ABC ở vi trí đồng vị.
=>DE // BC.
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
A B C I D E K F
1/. Ta có: B = C (tam giác ABC cân tại A)
Vì DI // AC => ACB = DIB (so le trong)
=> ABC = DIB ( = ACB) => tam giác BDI cân => BD = DI (1)
Xét tam giác DEI và tam giác CIE, có:
CIE = DEI ( DE // BC và so le trong)
IE cạnh chung
DIE = CEI ( DI // AC và so le trong)
=> tam giác DEI = CIE (g.c.g)
=> CE = DI (2)
Từ 1 và 2 => BD = DI = CE
2/. Vì CE = CF (gt) và CE = DI (cmt) => CF = DI
Vì ACI = DIB (cmt)
mà: ACI + FCI = DIB + DIK (=180) (hai góc kề bù)
=> FCI = DIK
Xét tam giác DIK và tam giác FCK, có:
IDK = CFK (DI // AF và so le trong)
DI = CF (cmt)
DIK = FDI (cmt)
=> tam giác DIK = tam giác FCK (g.c.g)
=> DK = KF (2 cạnh tương ứng =)