mn giải giùm mk bài này nka: giải hệ phương trình:
\(\sqrt{5}x-y=\sqrt{5}\cdot\left(\sqrt{3}-1\right)\)
\(2\sqrt{3}x+3\sqrt{5}y=21\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} (1+\sqrt{3}).\sqrt{5}x-(1+\sqrt{3})^2y=1+\sqrt{3}\\ (1+\sqrt{3}).\sqrt{5}x+5y=\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow 5y+(1+\sqrt{3})^2y=\sqrt{5}-(1+\sqrt{3})\) (lấy (2) trừ (1))
\(\Leftrightarrow y=\frac{\sqrt{5}-\sqrt{3}-1}{9+2\sqrt{3}}\)
\(x=\frac{1+(1+\sqrt{3})y}{\sqrt{5}}=\frac{1+\sqrt{5}+\sqrt{3}}{9+2\sqrt{3}}\)
1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
4. Đk: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)
\(\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\sqrt{15}x-\sqrt{5}y=\sqrt{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\left(\sqrt{15}+1\right)x=\sqrt{15}+\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{15}+1}\\y=\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{15}+1}\end{matrix}\right.\)
\(1,PT\Leftrightarrow2x-1=5\Leftrightarrow x=3\\ 2,\Leftrightarrow x-5=9\Leftrightarrow x=14\\ 3,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x=50\left(tm\right)\\ 4,\Leftrightarrow x=\dfrac{\sqrt{50}}{\sqrt{2}}=\dfrac{5\sqrt{2}}{\sqrt{2}}=5\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} 2(\sqrt{5}+2)x+2y=6-2\sqrt{5}\\ -x+2y=6-2\sqrt{5}\end{matrix}\right.\)
Lấy PT(1) trừ PT(2) theo vế:
$\Rightarrow 2(\sqrt{5}+2)x+x=(6-2\sqrt{5})-(6-2\sqrt{5})$
$\Leftrightarrow (2\sqrt{5}+5)x=0$
$\Leftrightarrow x=0$
$y=3-\sqrt{5}-(\sqrt{5}+2)x=3-\sqrt{5}-(\sqrt{5}+2).0=3-\sqrt{5}$
\(\int^{\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}y=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)\right)=21}\)
\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+15x-15\sqrt{3}+15=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{\left(2\sqrt{3}+15\right)x=6+15\sqrt{3}}\)
\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{x=\frac{6+15\sqrt{3}}{2\sqrt{3}+15}}\Leftrightarrow\int^{y=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}+\sqrt{5}=\sqrt{5}}_{x=\sqrt{3}}\)
Vậy nghiệm của hpt là: \(\int^{x=\sqrt{3}}_{y=\sqrt{5}}\)