Hãy so sánh:
a) 2 3 5 và 2 7 9
b) − 1 2 3 và − 7 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
em trả lời ccaua này hi vọng thầy còn nhớ em
a) -9/4<`1/3
a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)
\(\left(-2\sqrt{2}\right)^2=8\)
mà 7<8
nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)
\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)
mà 220<270
nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)
hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)
a)\(2,4 =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)
Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).
b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} = - \frac{{10}}{{25}}\)
Ta có: -3 > -10 nên \( - \frac{3}{{25}} > - \frac{{10}}{{25}}\) nên \( - 0,12 > - \frac{2}{5}\).
c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).
Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} > - 0,3.\)
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)