K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp

b, Đề phải là A = 2009.2011

Có :A = 2009.(2010+1) = 2009.2010+2009

= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1

Vì 2010^2-1 < 2010^2 = B => A < B

c, A = (3^3)^150 = 27^150

B = (5^2)^150 = 25^150

Vì 27^150 > 25^150 => A > B

k mk nha

13 tháng 12 2015

a) Xin lỗi bạn nhé !!!

 b) 2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 

=> 2010^2 > 2009 . 2011

c) 

\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\)

Nên \(3^{450}>5^{300}\)

13 tháng 12 2015

a) A = 2 + 22 + ... + 22010

       = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

       = 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)

       = 2.3 + 23.3 + ... + 22009.3 chia hết cho 3

   A = 2 + 22 + ... + 22010

      = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

      = 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)

      = 2.7 + 24.7 + ... + 22008.7 chia hết cho 7

b) Xét A = 2009.2011

             = (2010-1) . (2010+1)

             = 2010.2010 + 1.2010 - 1.2010 - 1.1

             = 2010.2010 - 1

          B = A - 1

Vậy B < A

c) Ta có : 3450 = 35.90 = 1590

                   5300 = 53.100 = 15100

Vì 1590 < 15100 nên 3450 < 5300 hay A < B

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

3 tháng 7 2018

a) \(\frac{21}{22}\)và \(\frac{2011}{2012}\)

Phần bù của phân số \(\frac{21}{22}\)là:

1 - \(\frac{21}{22}=\frac{1}{22}\)

Phần bù của phân số \(\frac{2011}{2012}\)là:

1 - \(\frac{2011}{2012}\)\(\frac{1}{2012}\)

Vì \(\frac{1}{22}>\frac{1}{2012}\)nên \(\frac{21}{22}< \frac{2011}{2012}\)

b, \(\frac{31}{95}\)và \(\frac{2012}{6035}\)

Cái này bạn tự tính nhé

c, \(\frac{2007}{2008}\)và \(\frac{2008}{2009}\)

Phần bù của phân số \(\frac{2007}{2008}\)là:

1 - \(\frac{2007}{2008}=\frac{1}{2008}\)

Phần bù của phân số \(\frac{2008}{2009}\)là:

1 - \(\frac{2008}{2009}=\frac{1}{2009}\)

Vì \(\frac{1}{2008}>\frac{1}{2009}\)nên \(\frac{2007}{2008}< \frac{2008}{2009}\)

3 tháng 7 2018

a , 

Phần bù lần lượt của \(\frac{21}{22};\frac{2011}{2012}\)là \(1-\frac{21}{22}=\frac{1}{22};1-\frac{2011}{2012}=\frac{1}{2012}\)

Ta có : \(\frac{1}{22}>\frac{1}{2012}\)=> \(\frac{21}{22}< \frac{2011}{2012}\)

28 tháng 12 2022

loading...

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)