CMR n^3+3n^2+2n chia het cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n-2+3\right)\)
\(=2n\left(n+1\right)\left(n-1\right)+3n\left(n+1\right)\)
Vì n;n+1;n-1 là ba số liên tiếp
nên \(2n\left(n+1\right)\left(n-1\right)⋮3!=6\)
Vì n;n+1 là hai số liên tiếp
nên \(3n\left(n+1\right)⋮3\cdot2=6\)
=>A chia hết cho 6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}