cho hình chữ nhật ABCD,sin DAC=0,8. AD=12cm.kẻ CEvuông góc với BD, AF vuông góc với AC. a) O cắt BD tại O. tính sinAOD. b) chứng minh: CEFD là hình thang cân. tính diện tích EFCD. c) kẻ AG vuông góc với BD, BH vuông góc với AC.chứng minh: EFGH là HCN. tính diện tich EFGH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADC vuông tại D có
\(\sin\widehat{DAC}=\dfrac{DC}{AC}\)
\(\Leftrightarrow\dfrac{DC}{AC}=\dfrac{4}{5}\)
nên \(DC=\dfrac{4}{5}AC\)
Áp dụng định lí Pytago vào ΔACD vuông tại D, ta được:
\(AC^2=AD^2+CD^2\)
\(\Leftrightarrow AC^2=42^2+\left(\dfrac{4}{5}AC\right)^2\)
\(\Leftrightarrow\dfrac{9}{25}AC^2=1764\)
\(\Leftrightarrow AC^2=4900\)
hay AC=70(cm)
Ta có: \(DC=\dfrac{4}{5}AC\)(cmt)
nên \(DC=\dfrac{4}{5}\cdot70=56\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DF là đường cao ứng với cạnh huyền AC, ta được:
\(DF\cdot AC=AD\cdot DC\)
\(\Leftrightarrow DF\cdot70=42\cdot56=2352\)
hay DF=33,6(cm)
Ta có: ABCD là hình chữ nhật(gt)
mà O là giao điểm của hai đường chéo AC và BD(gt)
nên \(DO=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(DO=\dfrac{70}{2}=35\left(cm\right)\)
Xét ΔDFO vuông tại F có
\(\sin\widehat{DOF}=\dfrac{DF}{DO}=\dfrac{33.6}{35}=\dfrac{24}{25}\)
hay \(\sin\widehat{AOD}=\dfrac{24}{25}\)
b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có
OD=OC(cmt)
\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)
Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)
Suy ra: OF=OE(hai cạnh tương ứng)
Xét ΔOAB có
\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)
nên FE//AB(Định lí Ta lét đảo)
mà AB//DC(gt)
nên FE//DC
Ta có: OE+OD=ED(O nằm giữa E và D)
OF+OC=FC(O nằm giữa F và C)
mà OE=OF(cmt)
và OD=OC(cmt)
nên ED=FC
Xét tứ giác CEFD có FE//CD(cmt)
nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)
Hình thang CEFD(FE//CD) có ED=FC(cmt)
nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét ΔDFO vuông tại F và ΔCEO vuông tại E có
OD=OC(cmt)
\(\widehat{FOD}=\widehat{EOC}\)(hai góc đối đỉnh)
Do đó: ΔDFO=ΔCEO(Cạnh huyền-góc nhọn)
Suy ra: OF=OE(hai cạnh tương ứng)
Xét ΔOAB có
\(\dfrac{OF}{OA}=\dfrac{OE}{OB}\left(OF=OE;OA=OB\right)\)
nên FE//AB(Định lí Ta lét đảo)
mà AB//DC(gt)
nên FE//DC
Ta có: OE+OD=ED(O nằm giữa E và D)
OF+OC=FC(O nằm giữa F và C)
mà OE=OF(cmt)
và OD=OC(cmt)
nên ED=FC
Xét tứ giác CEFD có FE//CD(cmt)
nên CEFD là hình thang có hai đáy là FE và CD(Định nghĩa hình thang)
Hình thang CEFD(FE//CD) có ED=FC(cmt)
nên CEFD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
a, Dễ CM AEOF là hình chữ nhật vì có 3 góc vuông
=>AO=EF
Mà AO=OC=AC/2 (O là tr.điểm AC do ABCD là hình chữ nhật)
=>EF=AC/2=12/2=6cm
b) CM \(\Delta AHO=\Delta CKO\left(ch-gn\right)\) => AH=KC
Mà AH//KC (cùng vuông góc với BD)
=>AHCK là hình bình hành => AK//HC
c, Có OA=OB=OC=OD (do ABCD là hình chữ nhật)
tam giác OAD cân có OE là đg cao nên cũng là trung tuyến => F là tr.điểm AD
Xét tam giác AHD vuông ở H có F là tr.điểm AD nên HF là trung tuyến ứng với cạnh huyền AD => HF=AF (=1/2AH)
Mà AF=OE (AEOF là hình chữ nhật)
=>HF=OE
Dễ CM EF là đg trung bình của tam giác ABD => EF//BD hay EF//OH=>EFHO là hình thang,mà HF=OE
=>EFHO là hình thang cân
toán hình phải vẽ mới giải được, lâu lắm