K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Chọn đáp án A.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Góc Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án là góc tạo bởi tia tiếp tuyến và dây cung chắn cung BC nên:

 

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1 tháng 3 2021

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 1 2022

Xét tam giác OBA có OB = OC = BC = R

Vậy tam giác OAB là tam giác đều 

=> ^BOC = ^OBC = ^OCB = 600

Vì AB ; AC là tiếp tuyến đường tròn (O) với B;C là tiếp điểm 

=> ^OBA = ^OCA = 900

=> ^ABC = ^OBA - ^OBC = 900 - 600 = 300

Do AB = AC ( tc tiếp tuyến cắt nhau ) 

=> ^ABC = ^ACB = 300 

=> ^BAC = 1800 - 2^ABC = 1200

3 tháng 9 2017

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

9 tháng 1 2019

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Trong một đường tròn, số đo của cung là số đo của góc ở tâm chắn cung đó.

+ Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.

30 tháng 8 2019

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ ΔOBC có OB = OC = BC (= R)

⇒ ΔOBC là tam giác đều

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến BA và dây BC

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc tạo bởi tiếp tuyến AC và dây CB

Giải bài 31 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

28 tháng 12 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm K của BC

K là trung điểm của BC

nên \(KB=KC=\dfrac{BC}{2}=12\left(cm\right)\)

Ta có: ΔBKO vuông tại K

=>\(KB^2+KO^2=OB^2\)

=>\(OK^2=15^2-12^2=81\)

=>\(OK=\sqrt{81}=9\left(cm\right)\)

Xét ΔOBA vuông tại B có BK là đường cao

nên \(OK\cdot OA=OB^2\)

=>\(OA=\dfrac{15^2}{9}=25\left(cm\right)\)

Ta có: ΔOBA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=25^2-15^2=400\)

=>\(BA=\sqrt{400}=20\left(cm\right)\)

c: Sửa đề: E là giao điểm của AC và BD

Ta có: BH\(\perp\)CD

AC\(\perp\)CD

Do đó: BH//CD

Xét ΔDCA có HI//CA

nên \(\dfrac{HI}{CA}=\dfrac{DI}{DA}\left(3\right)\)

Xét ΔDAE có IB//AE
nên \(\dfrac{IB}{AE}=\dfrac{DI}{DA}\left(4\right)\)

Xét (O) có

ΔDBC nội tiếp

DC là đường kính

Do đó: ΔDBC vuông tại B

=>DB\(\perp\)BC tại B

=>BC\(\perp\)DE tại B

=>ΔCBE vuông tại B

Ta có: \(\widehat{ABE}+\widehat{ABC}=\widehat{CBE}=90^0\)

\(\widehat{AEB}+\widehat{ACB}=90^0\)(ΔCBE vuông tại B)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{AEB}\)

=>AB=AE
mà AB=AC

nên AE=AC

Từ (3) và (4) suy ra \(\dfrac{HI}{CA}=\dfrac{IB}{AE}\)

mà CA=AE

nên HI=IB

20 tháng 1 2018

Chọn đáp án C.

Ta có:

Góc Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án là góc tạo bởi tia tiếp tuyến và dây cung chắn cung BC nên:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án