K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Chọn đáp án A.

NV
23 tháng 12 2022

\(A=\dfrac{2x}{x\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3}{x-y}\)

\(=\dfrac{2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{6x}{\left(x-y\right)\left(x+y\right)}-\dfrac{3\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{2x-2y+6x-3x-3y}{\left(x-y\right)\left(x+y\right)}=\dfrac{5\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{5}{x+y}\)

3x=2y

nên x/2=y/3

Đặt x/2=y/3=k

=>x=2k; y=3k

\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)

\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)

18 tháng 8 2023

$\left(x^{\sqrt{2}}y\right)^{\sqrt{2}} = x^{\sqrt{2} \cdot \sqrt{2}}y^{\sqrt{2}} = x^2y^{\sqrt{2}}$

$x^2y^{\sqrt{2}} \cdot 9y^{-\sqrt{2}} = 9x^2y^{\sqrt{2}}y^{-\sqrt{2}} = 9x^2$

\(\dfrac{1}{y-x}\cdot\sqrt{x^6\left(x-y\right)^2}\)

\(\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)\)

\(=-x^3\)

28 tháng 10 2021

\(=\dfrac{1}{y-x}\cdot x^3\cdot\left(x-y\right)=-x^3\)

19 tháng 12 2020

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

19 tháng 12 2020

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)

22 tháng 11 2021

D

22 tháng 11 2021

D

\(=\dfrac{xy\left(x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}\right)}{x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}}=xy\)

23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{3}{2}}y+xy^{\dfrac{3}{2}}}{\sqrt{x}+\sqrt{y}}=\left(x+y\right).\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\).

b: \(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)