CMR nếu (a+3,b-2) =1 thì (5a+7b+1,7a+10b+1)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5a^2+10b^2-6ab-4a+2b+3\)
\(=\left(a^2-6ab+9b^2\right)+\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+1\)
\(=\left(a-3b\right)^2+\left(2a-1\right)^2+\left(b+1\right)^2+1>0\left(đpcm\right)\)
Bài 1:
Ta có:
\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)
\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )
\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)
Do đó ta có đpcm.
Bài 2:
Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.
Ta có: \(5a+2b\vdots 17\)
\(\Leftrightarrow 2(5a+2b)\vdots 17\)
\(\Leftrightarrow 10a+4b\vdots 17\)
\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)
\(\Leftrightarrow 27a+21b\vdots 17\)
\(\Leftrightarrow 3(9a+7b)\vdots 17\)
\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)
Ta có đpcm.
a) Vì BCNN(5;3;8)=120
\(\Rightarrow5a=8b=3c\Leftrightarrow\frac{5a}{120}=\frac{8b}{120}=\frac{3c}{120}=\frac{a}{24}=\frac{b}{15}=\frac{c}{40}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{24}=\frac{b}{15}=\frac{c}{40}=\frac{a}{24}=\frac{2b}{30}=\frac{c}{40}=\frac{a-2b+c}{24-30+40}=\frac{34}{34}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=1.24=24\\b=1.15=15\\c=1.40=40\end{matrix}\right.\)
Vậy...
b)Có: \(3a=7b\Leftrightarrow\frac{a}{7}=\frac{b}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{7}=\frac{b}{3}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
\(\Rightarrow\left\{{}\begin{matrix}a=4.7=28\\b=4.3=12\end{matrix}\right.\)
Vậy...
c) Vì BCNN(15;10;6)=30
\(\Rightarrow15a=10b=6c\Leftrightarrow\frac{15a}{30}=\frac{10b}{30}=\frac{6c}{30}=\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)
Thay\(a=2k;b=3k;c=5k\) vào \(abc=-1920\), ta có:
\(2k.3k.5k=-1920\\ \Leftrightarrow30k^3=-1920\\ \Leftrightarrow k^3=-64\\ \Leftrightarrow k^3=\left(-4\right)^3\\ \Leftrightarrow k=-4\)
\(\Rightarrow\left\{{}\begin{matrix}a=-4.2=-8\\b=-4.3=-12\\c=-4.5=-20\end{matrix}\right.\)
Vậy...
a)Vì a<b=>2a<2b
=>2a+5<2b+5
b)Vì a<b=>-10a>-10b
=>2-10a>2-10b
c)Vì a<b=>7a<7b
=>7a-3<7b-3(1)
Vì -3<-1=>7b-3<7b-1(2)
Từ (1) và (2)=>đpcm
d)Vì a<b=>\(-\dfrac{a}{3}< -\dfrac{b}{3}\)
=>\(3-\dfrac{a}{3}>3-\dfrac{b}{3}\)(3)
Vì 3>1=>\(3-\dfrac{b}{3}>1-\dfrac{b}{3}\)(4)
Từ (3) và (4)=> đpcm
a, Ta có: a < b \(\Rightarrow\) 2a < 2b \(\Rightarrow\) 2a + 5 < 2b + 5
b, Ta có: a < b \(\Rightarrow\) -10a > -10b (đổi dấu) \(\Rightarrow\) 2 + (-10a) > 2 + (-10b) \(\Leftrightarrow2-10a>2-10b\)
c, Ta có: a < b \(\Rightarrow\)7a < 7b
Lại có: -3 < -1
\(\Rightarrow\) 7a + (-3) < 7a + (-1) \(\Leftrightarrow\) 7a - 3 < 7b - 1
d, Ta có: a < b \(\Rightarrow-\dfrac{a}{3}>-\dfrac{b}{3}\)(đổi dấu)
Lại có: 3 > 1
\(\Rightarrow3+\left(-\dfrac{a}{3}\right)>1+\left(-\dfrac{b}{3}\right)\Leftrightarrow3-\dfrac{a}{3}>1-\dfrac{b}{3}\)