K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(2S=2+2^2+...+2^{2022}\\ \Leftrightarrow2S-S=S=2^{2022}-1\)

27 tháng 8 2023

\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)

\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)

\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)

\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)

\(\Rightarrow dpcm\)

7 tháng 5 2021

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

11 tháng 5 2023

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)

\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)

Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)

 

18 tháng 4 2022

A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60

22 tháng 3 2024

Ta có: A=12+122+123+124+...+122021+122022�=12+122+123+124+...+122021+122022

2A=1+12+122+123+...+122020+122021⇒2�=1+12+122+123+...+122020+122021

2AA=(1+12+122+123+...+122020+122021)(12+122+123+124+...+122021+122022)⇒2�-�=(1+12+122+123+...+122020+122021)-(12+122+123+124+...+122021+122022)

A=1122022<1⇒�=1-122022<1

A<1   (1)⇒�<1   (1)

Lại có: B=13+14+15+1760�=13+14+15+1760

B=1615⇒�=1615

B=1+115>1⇒�=1+115>1

B>1    (2)⇒�>1    (2)

Từ (1)(1) và (2)A<B(2)⇒�<�

Vậy A<B

\(2P=2+2^2+2^3+...+2^{2022}\)

\(\Leftrightarrow P=2^{2022}-1< Q\)

\(2P=2+2^2+2^3+...+2^{2022}\)

\(\Leftrightarrow P< Q\)

16 tháng 4 2022

kp[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 tháng 10 2023

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)

nên \(A⋮3\).

\(Toru\)

19 tháng 10 2023

A=(2+22)+22(2+22)+...+22020(2+22)

A= 6.1+22.6+...+22020.6

A=6(1+22+...+22020) chia hết cho 3

vậy A chia hết cho 3