K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là ba điểm chung của hai mặt phẳng phân biệt.

23 tháng 8 2017

                        

B. Các phương pháp chứng minh ba điểm thẳng hàng dành cho HSG lớp 7:

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.

                 Chúng minh ba điểm M, C, N thẳng hàng.

Hướng dẫn: Chứng minh: CM // BD và CN // BD từ đó suy ra M, C, N thẳng hàng.

                                                          BÀI GIẢI

                AOD và COD có:               

                        OA = OC (vì O là trung điểm AC)

                       (hai góc đối đỉnh)

                        OD = OB (vì O là trung điểm BD)

               Vậy AOD = COB (c.g.c)

              Suy ra: .

              Do đó: AD // BC. Nên (ở vị trí đồng vị)                 hình 8

              DAB và CBM có :   

              AD = BC ( do AOD = COB), , AB = BM ( B là trung điểm AM)

              Vậy DAB = CBM (c.g.c). Suy ra . Do đó BD // CM. (1)

               Lập luận tương tự ta được BD // CN. (2)

               Từ (1) và (2) , theo tiên đề Ơ-Clit suy ra ba điểm M, C, N thẳng hàng.

    BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 2

Baì 1. Cho tam giác ABC. Vẽ cung tròn tâm C bán kính AB và cung tròn tâm B bán kính

            AC. Đường tròn tâm A bán kính BC cắt các cung tròn tâm C và tâm B lần lượt tại E

            và F. ( E và F nằm trên cùng nửa mặt phẳng bờ BC chứa A)

           Chứng minh ba điểm F, A, E thẳng hàng.

PHƯƠNG PHÁP 3

Ví dụ: Cho tam giác ABC có AB  = AC. Gọi M là trung điểm BC.

a)     Chứng minh AM  BC.

b)    Vẽ hai đườn tròn tâm B và tâm C có cùng bán kính sao cho chúng cắt nhau tại hai

điểm P và Q . Chứng minh ba điểm A, P, Q thẳng hàng.

Gợi ý: Xử dụng phương pháp 3 hoặc 4 đều giải được.

          - Chứng minh AM , PM, QM cùng vuông góc BC

          - hoặc AP, AQ là tia phân giác của góc BAC.

BÀI GIẢI.

Cách 1. Xử dụng phương pháp 3.

a) Chứng minh AM  BC.

               ΔABM và ΔACM có:

               AB =AC (gt)

               AM chung

               MB = MC (M là trung điểm BC)

          Vậy ΔABM = ΔACM (c.c.c). Suy ra: (hai góc tương ứng)

          Mà  (hai góc kề bù) nên

          Do đó:   AM  BC (đpcm)

b)    Chứng minh ba điểm A, P, Q thẳng hàng.

Chứng minh tương tự ta được: ΔBPM = ΔCPM (c.c.c).

              Suy ra: (hai góc tương ứng), mà  nên = 900

              Do đó: PM  BC.

              Lập luận tương tự QM  BC 

             Từ điểm M trên BC có AM  BC,PM  BC, QM  BC nên ba điểm A, P, Q

              thẳng hàng (đpcm)

Cách 2. Xử dụng phương pháp 4.

Chứng minh :

              ΔBPA = ΔCPA . Vậy AP là tia phân giác của . (1)

              ΔABQ = ΔACQ .Vậy AQ là tia phân giác của . (2)

              Từ (1) và (2) suy ra ba điểm A; P; Q thẳng hàng.     

                                                     PHƯƠNG PHÁP 4

Ví dụ:Cho góc xOy .Trên hai cạnh Ox và Oy lấy lần lượt hai điểm B và C sao cho OB = OC.

          Vẽ đường tròn tâm B và tâm C có cùng bán kính sao cho chúng cắt nhau tại hai điểm

          A và D nằm trong góc xOy.

          Chứng minh ba điểm O, A, D thẳng hàng.

Hướng dẫn: Chứng minh OD và OA là tia phân giác của góc xOy

                                                        BÀI GIẢI:

          ΔBOD và ΔCOD có:

          OB = OC (gt)

          OD chung

          BD = CD (D là giao điểm của hai đường tròn tâm B và tâm C

                            cùng bán kính).

          Vậy ΔBOD =ΔCOD (c.c.c).

          Suy ra : .

          Điểm D nằm trong góc xOy nên tia OD nằm giữa hai tia Ox và Oy.

          Do đó OD là tia phân giác của .

          Chứng minh tương tự ta được OA là tia phân giác của .

          Góc xOy chỉ có một tia phân giác nên hai tia OD và OA trùng nhau.

          Vậy ba điểm O, D, A thẳng hàng.

BAÌ TẬP THỰC HÀNH

Bài 1. Cho tam giác ABC có AB = AC. Kẻ BM AC, CN  AB (), H là giao

          điểm của BM và CN.

          a) Chứng minh AM = AN.

          b) Gọi K là trung điểm BC. Chứng minh ba điểm A, H, K thẳng hàng.

Bài 2. Cho tam giác ABC có AB = AC. Gọi H là trung điểm BC. Trên nửa mặt phẳng bờ AB

          chứa C kẻ tia Bx vuông góc AB, trên nửa mặt phẳng bờ AC chứa B kẻ tia Cy vuông

          AC. Bx và Cy cắt nhau tại E. Chứng minh ba điểm A, H, E thẳng hàng.

PHƯƠNG PHÁP 5

 Ví dụ 1 . Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy

                      điểm N sao cho BM = CN. Gọi K là trung điểm MN.

                     Chứng minh ba điểm B, K, C thẳng hàng

Gợi ý: Xử dụng phương pháp 1

          Cách 1: Kẻ ME  BC ; NF  BC ( E ; F  BC)

                        và  vuông tại E và F có:

                       BM = CN (gt),  ( cùng bằng )

                  Do đó:  = (Trường hợp cạnh huyền- góc nhọn)

                 Suy ra: ME = NF.

                 Gọi K là giao điểm của BC và MN.

                 MEK và  NFK vuông ở E và F có: ME = NF (cmt), ( so le trong

                  của ME // FN) . Vậy  MEK =  NFK (g-c-g). Do đó: MK = NK .

                 Vậy K là trung điểm MN, mà K là trung điểm MN nên K  K

                 Do đó ba điểm B,K,C thẳng hàng.

          Cách 2. Kẻ ME // AC (E  BC)  (hai góc đồng vị)

                  Mà  nên . Vậy ΔMBE cân ở M.

                  Do đó: MB = ME kết hợp với giả thiết MB = NC ta được

                  ME = CN.

                  Gọi K là giao điểm của BC và MN.

                 ΔMEK và  ΔNCK có:

                  (so le trong của ME //AC)

                 ME = CN      (chứng minh trên)

                 (so le trong của ME //AC)

                 Do đó : ΔMEK =  ΔNCK (g.c.g)  MK = NK.

                 Vậy K là trung điểm MN, mà K là trung điểm MN nên K  K

                 Do đó ba điểm B,K,C thẳng hàng.

Lưu ý: Cả hai cách giải trên đa số học sinh chứng minh ΔMEK = ΔNCK vô tình thừa nhận

           B, K, C thẳng hàng, việc chứng minh nghe có lý lắm nhưng không biết là sai

  Ví dụ 2. Cho tam giác ABC cân ở A , , Gọi O là một điểm nằm trên tia phân giác

                của góc C sao cho . Vẽ tam giác đều BOM ( M và A cùng thuộc một nửa

                mặt phẳng bờ BO).

               Chứng minh ba điểm C, A, M thẳng hàng.

Hướng dẫn: Chứng minh  từ đó suy ra  tia CA và  tia CM trùng nhau.

                                                            BÀI GIẢI

           Tam giác ABC cân ở A nên

           (tính chất của tam giác cân). Mà CO là tia phân giác của ,

           nên . Do đó

           ΔBOM đều nên .

          Vậy :

          ΔBOC và ΔMOC có:

                             OB = OM ( vì ΔBOM đều)

                   

                   OC chung

          Do đó : ΔBOC = ΔMOC (c.g.c)

          Suy ra:  mà  (gt) nên .

          Hai tia CA và CM cùng nằm trên nửa mặt phẳng bờ CO và  nên tia CA và

          tia CM trùng nhau. Vậy ba điểm C, A, M thẳng hàng. (đpcm)

Lưu ý: Trong phần này chuyên đề chưa được hoàn chỉnh, thầy cô giáo dạy toán lớp 7 muốn

           sử dụng cần viết lại từ phần đặt vấn đề và bổ sung thêm bài tập mới hoàn chỉnh được.

           Chúc tất cả chúng ta , những người làm nghề “lái đò” có một ngày 20//11 trọn vẹn.

                                                                                                Chào thân ái.

                                                                        Thăng Bình –Quảng Nam  ngày 20/11/2009

                                                                                                  Basan0702

23 tháng 8 2017

copy trên mạng thì đửng có đăng !

31 tháng 3 2017

Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là các điểm chung của hai mặt phẳng phân biệt. Khi đó chúng sẽ thẳng hàng trên giao tuyến của hai mặt phẳng đó

5 tháng 1 2022

Muốn chứng minh ba điểm thẳng hàng ta chứng minh ba điểm đó là các điểm chung của hai mặt phẳng phân biệt. Khi đó chúng sẽ thẳng hàng trên giao tuyến của hai mặt phẳng đó

20 tháng 8 2017

c1: C/m 3 diem do tao nen 1 goc bet (=180 do)

20 tháng 8 2017

Để chứng minh ba điểm thẳng hàng dành cho HSG lớp 7:

Ta cần phải chứng minh 3 điểm đó cùng nằm trên 1 đường thẳng

Sau đó ta chứng minh tiếp là góc chứa 3 điểm thẳng hàng đó = 180 độ.

Tức góc đó là góc bẹt.

* Nếu mình làm đúng thì k cho mình nhé !!!

Thank you              ^_^       ^_^        ^_^

14 tháng 8 2018

Để chứng minh ba đường thẳng đồng quy, ta chứng minh:

– Ba đường thẳng ấy không đồng phẳng và đôi một cắt nhau.

– Ba đường thẳng ấy là các giao tuyến của ba mặt phẳng phân biệt đôi một cắt nhau và chúng không song song.

13 tháng 4 2023

bạn viết lạio đi ạ, mình kh đọc được :_(

20 tháng 12 2015

Ba điểm thẳng hàng khi:

+) Ba điểm cùng nằm trên một đường thẳng

+) Có một điểm và chỉ một điểm nằm giữa hai điểm còn lại

Bài tập:

1) Vẽ ba điểm A, B, C thẳng hàng sao cho điểm B nằm giữa hai điểm A và C. Có mấy trường hợp hình vẽ?

2) a) Cho ba điểm A, B, C thẳng hàng thì có mấy trường hợp hình vẽ?

b) Trong mỗi trường hợp, có mấy điểm nằm giữa hai điểm còn lại?

c) Hãy nói cách vẽ ba điểm ko thẳng hàng

17 tháng 6 2017

hứng minh đường thẳng song song với đường thẳng:

Để chứng minh hai đường thẳng song song, ta sử dụng các định lí.

- Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng qui hoặc đôi một song song với nhau.

- Hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

- Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

- Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.

- Hai mặt phẳng phân biệt cùng song song với với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

- Một mặt phẳng cắt hai mặt phẳng song song cho hai giao tuyến song song.

- Sử dụng các phương pháp của hình học phẳng. Tính chất đường trung bình, định lí Ta-lét đảo, cạnh đối hình bình hành…

- Sử dụng tính chất về cạnh bên, cạnh đáy của hình lăng trụ.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

31 tháng 3 2017

Muốn chứng minh ba đường thẳng đồng quy ta chứng minh giao điểm của hai đường này là điểm chung của hai mặt phẳng mà giao tuyến là đường thứ ba