K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

A’, B’ lần lượt là ảnh của A, B qua phép đồng dạng F, tỉ số k ⇒ A’B’= kAB

M’ = F(M) ⇒ A’M’ = kAM

M là trung điểm AB ⇒ AM = 1/2 AB ⇒ kAM = 1/2 kAB hay A’M’= 1/2 A’B’

Vậy M’ là trung điểm của A’B’

22 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

Gọi A', B', M' lần lượt là ảnh của A, B, M qua phép dời hình F

Theo tính chất 1 ⇒ AB = A'B' và AM = A'M' (1)

M là trung điểm AB ⇒ AM = 1/2 AB

Kết hợp (1) ⇒ A'M' = 1/2 A'B' ⇒ M' là trung điểm A'B'

a: BE=AB/2

DF=DC/2

mà AB=DC

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

=>BEDF là hình bình hành

=>DE=BF

b: BEDF là hbh

=>BD cắt EF tại trung điểm của mỗi đường(1)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

 

24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

26 tháng 10 2023

A B C M E F I D

a/

\(ME\perp AB\) (gt)

\(AC\perp AB\Rightarrow AF\perp AB\)

=> ME//AF

\(AB\perp AC\Rightarrow AE\perp AC\)

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

\(MF\perp AC\Rightarrow MI\perp AC\)

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM \(\Rightarrow AM=BM=CM=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều \(\Rightarrow\widehat{B}=60^o\)

Để ABCI là hình thang cân thì tg vuông ABC có \(\widehat{B}=60^o\)

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI