K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

A’, B’ lần lượt là ảnh của A, B qua phép đồng dạng F, tỉ số k ⇒ A’B’= kAB

M’ = F(M) ⇒ A’M’ = kAM

M là trung điểm AB ⇒ AM = 1/2 AB ⇒ kAM = 1/2 kAB hay A’M’= 1/2 A’B’

Vậy M’ là trung điểm của A’B’

22 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11

Gọi A', B', M' lần lượt là ảnh của A, B, M qua phép dời hình F

Theo tính chất 1 ⇒ AB = A'B' và AM = A'M' (1)

M là trung điểm AB ⇒ AM = 1/2 AB

Kết hợp (1) ⇒ A'M' = 1/2 A'B' ⇒ M' là trung điểm A'B'

25 tháng 4 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Gọi H là trung điểm của BC

△ABC có: E là trung điểm của AC, H là trung điểm của BC

Suy ra: EH // AB

Mà AB // A'B'

Do đó: EH // A'B' hay EH // B'F (1)

Ta có: EH // AB nên \(\dfrac{EH}{AB}=\dfrac{EC}{AC}=\dfrac{1}{2}\)

Mà AB = A'B', B'F = \(\dfrac{1}{2}\) A'B'

Nên: EH = B'F (2)

(1)(2) suy ra: EHB'F là hình bình hành. Do đó: EF // B'H

Mà B'H thuộc (BCC'B')

Suy ra: EF // (BCC'B')

b) Gọi K là trung điểm AB

Dễ dàng chứng minh được FKBB' là hình bình hành

Ta có: FK // BB' 

Mà BB' // CC' 

Suy ra: FK // CC' (1)

Ta có: FK = BB', mà BB' = CC' 

Do đó: FK = CC' (2) 

(1)(2) suy ra FKCC' là hình bình hành 

Mà hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường

Nên C'K cắt CF tại trung điểm của hai đường thẳng

mà C'K thuộc (AC'B) , CF cắt (AC'B) tại I (đề bài)

Do đó: I là trung điểm của CF. 

13 tháng 9 2019

Giải bài 5 trang 35 sgk Hình học 11 | Để học tốt Toán 11

+ Lấy đối xứng qua đường thẳng IJ.

IJ là đường trung trực của AB và EF

⇒ ĐIJ(A) = B; ĐIJ (E) = F

O ∈ IJ ⇒ ĐIJ (O) = O

⇒ ĐIJ (ΔAEO) = ΔBFO

+ ΔBFO qua phép vị tự tâm B tỉ số 2

Giải bài 5 trang 35 sgk Hình học 11 | Để học tốt Toán 11

Vậy ảnh của ΔAEO qua phép đồng dạng theo đề bài là ΔBCD.

2 tháng 11 2018

+ Ta đi xác định đường thẳng ∆:

Giả sử đã dựng được đường thẳng ∆ cắt cả AN và A’B. Gọi I; J  lần lượt là giao điểm của ∆ với AN  và A’B.

Xét phép chiếu song song lên (ABCD) theo phương chiếu A’B.

Khi đó ba điểm J; I; M  lần lượt có hình chiếu là B; I’; M

Do J; I; M  thẳng hàng nên B; I’; M  cũng thẳng hàng. Gọi N’ là hình chiếu của N thì AN’ là hình chiếu của AN.

Vì I thuộc AN nên I’ thuộc AN’

=> I ‘ là giao điểm của BM và AN’.

Từ trên suy ra cách dựng:

+ Gọi I’ là giao điểm  của AN’ và BM.

+Trong ( ANN’) dựng II’// NN’( đã có NN’// CD’) cắt AN tại I .

+Vẽ đường thẳng MI, đó chính là đường thẳng cần dựng.

+ Tính tỉ số:

Ta có  MC= CN’ suy ra MN’= CD= AB. Do đó I’ là trung điểm của BM.

Mặt khác II’// JB  nên II’ là đường trung bình của tam giác MBJ, suy ra IM= IJ nên  I M I J = 1

Chọn B

31 tháng 12 2019

Để ý rằng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó  A B →   =   t A C → , với 0 < t < 1. Áp dụng bài 1.39 ta cũng có  A ' B →   =   t A ' C ' → , với 0 < t < 1. Do đó ba điểm A′, B′, C′ thẳng hàng và điểm B' nằm giữa hai điểm A' và C'.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a)

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

 Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: \(\frac{{BI}}{{BD}} = \frac{{BF}}{{BE}}\) (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ∆ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3}\)  hay \(\frac{{BI}}{{\frac{1}{2}BD}} = \frac{{2BI}}{{BD}} = \frac{2}{3}\)

Do đó \(\frac{{BI}}{{BD}} = \frac{1}{3}\) (2)

Từ (1) và (2) suy ra \(\frac{{BF}}{{BE}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\) hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\).

Chứng minh tương tự ta cũng có \(\frac{{D'E}}{{D'F}} = \frac{{D'J}}{{D'B'}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\)  hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\)

Do đó \(\frac{{BF}}{{EF}} = \frac{{D'E}}{{EF}} = \frac{1}{2}\) nên BF = D’E = ½ EF.

31 tháng 3 2017

Phép đối xứng qua đường thẳng ***** biến tam giác AEO thành tam giác BFO, phép vị tự tâm B, tỉ số 2 biến tam giác BFO thành tam giác BCD. Do đó ảnh của tam giác AEO qua phép đồng dạng đã cho là tam giác BCD.

31 tháng 3 2017

Phép đối xứng qua đường thẳng biến tam giác AEO thành tam giác BFO, phép vị tự tâm B, tỉ số 2 biến tam giác BFO thành tam giác BCD. Do đó ảnh của tam giác AEO qua phép đồng dạng đã cho là tam giác BCD.

10 tháng 12 2020

Cho tứ diện ABCD . Gọi G1,G2,G3 lần lượt là trọng tâm của các tam giác ABC,ACD,ABD . Chứng minh mặt phẳng (G1G2G3) // (BCD)