K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi E là giao điểm của AC và BD.

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDC cân tại E ⇒ ED = EC (1)

+ AB//CD ⇒ Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Các cặp góc so le trong)

Mà Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔEAB cân tại E ⇒ EA = EB (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

17 tháng 8 2023

Xét hình thang ABCD ta có :

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{D}=180^o\left(đề.bài\right)\\\widehat{B}+\widehat{A}=180^o\left(t/c.hình.thang\right)\end{matrix}\right.\)

\(\Rightarrow\widehat{C}=\widehat{D}\)

⇒ ABCD là hình thang cân (dpcm)

17 tháng 8 2023

Ta có : AB // CD ⇒ \(\widehat{B}\) + \(\widehat{C}\) = 180o mà \(\widehat{B}+\widehat{D}=\) 180o ⇒ \(\widehat{D}=\widehat{C}\)

Vì AB // CD; \(\widehat{D}=\widehat{C}\) vậy ABCD là hình thang cân

30 tháng 12 2018

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

31 tháng 12 2018

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

24 tháng 7 2015

- Gọi O là giao điểm của AC và BD. 
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC. 
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD. 
=>Tam giác ABO cân tại O => 0A=0B.(1) 
Tương tự tam giác ODC cân tại O =>OD=OC.(2) 
Lại có góc AOD=góc BOC (đối đỉnh ) (3) 
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra : 
+ AD=BC (*) 
+ Góc ADB=góc BCA(**) 
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )

3 tháng 7 2017

O A B C D 1 2 1 2

7 tháng 8 2016

gọi BD giao với AC tại M 

xét tam giác MDC ta có : góc MDC= góc MCD (gt)

=> tam giác MDC cân tại M => MC=MD

ta cũng có góc MAB= góc MBA=> tam giác MAB cân tại M 

=> MA=MB

xét tam giác ADM và tam giác BCM

ta có : AM=MB (CMT)

           MD=MC (CMT)

góc AMD= góc BMC (đ đ)

=> tam giác ADM = tam giác BCM

=> AD=BC

mà ABCD là hình thang 

=> ABCD là hình thang cân

12 tháng 8 2021

dung

 

16 tháng 9 2019

A B C D O

Gọi AC cắt BD tại O

Xét tam giác DOC có : góc ODC = góc OCD (gt)

=> tam giác DOC cân tại O

=> DO = OC (đn)     (1)

AB // CD (gt)

=> góc BAO = góc OCD  (slt)

     góc ABO = góc ODC  (slt)

mà góc OCD = góc ODC (gt)

=> góc BAO = góc ABO

=> tam giác BAO cân tại O

=> OB = OA

OA + OC = AC

OB + OD = BD   và (1)

=> BD = AC  ; hình thang ABCD 

=> ABCD là hình thang cân (dh)

16 tháng 9 2019

A B C D 1 1 1 1 E

Gọi E là giao điểm của AC và BD.

\(\widehat{C}_1=\widehat{D}_1\Rightarrow\Delta EDC\)  cân tại E \(\Rightarrow ED=EC\) ( 1 )

+ AB // CD \(\Rightarrow\widehat{A}_1=\widehat{C}_1\) và \(\widehat{B}_1=\widehat{D_1}\)  (Các cặp góc so le trong)

Mà \(\widehat{C}_1=\widehat{D}_1\Rightarrow\widehat{A}_1=\widehat{B_1}\)

\(\Rightarrow\Delta EAB\) cân tại E \(\Rightarrow EA=EB\) ( 2 )

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

Chúc bạn học tốt !!!

Câu 1: 

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C
Do đó: ΔAED=ΔBFC

Suy ra: DE=CF

Bài 2: 

b: Xét ΔBAD và ΔABC có

AB chung

AD=BC

BD=AC

Do đó: ΔBAD=ΔABC

Suy ra: góc EAB=góc EBA

=>ΔEAB cân tại E

=>EA=EB

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

26 tháng 10 2019

cần gấp lắm hộ mình