So sánh:
A = \(\frac{9^{10}+1}{9^{11}+1}\)
B = \(\frac{9^{11}+1}{9^{12}+1}\)
Giúp mik nhanh nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm mẫu câu a) các câu sau tương tự nhé :
Đăt \(A=\frac{9^{10}+1}{9^{11}+1}\Rightarrow9A=\frac{9^{11}+9}{9^{11}+1}=1+\frac{8}{9^{11}+1}\)
\(B=\frac{9^{11}+1}{9^{12}+1}\Rightarrow9B=\frac{9^{12}+9}{9^{12}+1}=1+\frac{8}{9^{12}+1}\)
Ta có : \(9^{11}+1< 9^{12}+1\)
\(\Rightarrow\frac{8}{9^{11}+1}>\frac{8}{9^{12}+1}\)
\(\Rightarrow1+\frac{8}{9^{11}+1}>1+\frac{8}{9^{12}+1}\)
\(\Rightarrow9A>9B\)
hay : \(A>B\)
Vậy : \(\frac{9^{10}+1}{9^{11}+1}>\frac{9^{11}+1}{9^{12}+1}\)
Đặt \(\frac{9^{10}+1}{9^{11}+1}\)là A
\(\frac{9^{11}+1}{9^{12}+1}\) là B
\(\Rightarrow9A=\frac{9^{11}+9}{9^{11}+1}=1+\frac{8}{9^{11}+1}\)
\(\text{}\Rightarrow9B=\frac{9^{12}+9}{9^{12}+1}=1+\frac{8}{9^{12}+1}\)
\(\text{Vì }\frac{8}{9^{11}+1}>\frac{8}{9^{12}+1}\)
\(\Rightarrow9A>9B\Rightarrow A>B\)
các bài khác cũng tương tự nhé nhé
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
câu b nha
B= 1/100 - (1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99)
B=1/100 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - ... - 1/99 + 1/99 - 1/100)
B=1/100-(1-1/100)
B=1/100-99/100
B= - 98/100
B= - 49/50
đ ú g nha
Ta có :
\(\hept{\begin{cases}A=\frac{9^{10}+1}{9^{11}+1}\\B=\frac{9^{11}+1}{9^{12}+1}\end{cases}}\Rightarrow\hept{\begin{cases}9A=\frac{9^{11}+9}{9^{11}+1}\\9B=\frac{9^{12}+9}{9^{12}+1}\end{cases}}\Rightarrow\hept{\begin{cases}9A=1+\frac{8}{9^{11}+1}\\9B=1+\frac{8}{9^{12}+1}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}A=\frac{1+\frac{8}{9^{11}+1}}{9}\\B=\frac{1+\frac{8}{9^{12}+1}}{9}\end{cases}}\Rightarrow A=\frac{1+\frac{8}{9^{11}+1}}{9}>\frac{1+\frac{8}{9^{12}+1}}{9}=B\)
ok thanks bạn