Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
a; \(\dfrac{3}{11}\) + \(\dfrac{5}{-9}\) + \(\dfrac{4}{11}\) - \(\dfrac{4}{9}\) + \(\dfrac{3}{17}\) + \(\dfrac{15}{11}\)
= (\(\dfrac{3}{11}\) + \(\dfrac{4}{11}\) + \(\dfrac{15}{11}\)) - (\(\dfrac{5}{9}\) + \(\dfrac{4}{9}\)) + \(\dfrac{3}{17}\)
= 2 - 1 + \(\dfrac{3}{17}\)
= 1 + \(\dfrac{3}{17}\)
= \(\dfrac{20}{17}\)
c; N = \(\dfrac{\dfrac{5}{7}-\dfrac{5}{9}-\dfrac{5}{11}}{\dfrac{15}{7}+\dfrac{15}{9}+\dfrac{15}{11}}\)
Phải là - \(\dfrac{5}{7}\) chỗ tử số mới đúng em nhé!
BÀI 1
a, \(5\times\frac{-7}{10}=\frac{-35}{10}=\frac{-7}{2}\)
b, \(\frac{4}{5}\times\frac{-7}{10}=\frac{-28}{50}=\frac{-14}{25}\)
c, \(\frac{4}{9}+\frac{4}{3}\times\frac{16}{4}=\frac{4}{9}+\frac{16}{3}=\frac{52}{9}\)
d, \(\frac{11}{22}-\frac{3}{9}\times\frac{14}{21}=\frac{11}{22}-\frac{2}{9}=\frac{55}{198}=\frac{5}{18}\)
BÀI 2
\(A=\frac{6}{13}\times\frac{5}{7}+\frac{6}{13}\times\frac{2}{7}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{17}{13}\)
\(A=\frac{30}{91}+\frac{12}{91}+\frac{119}{91}\)
\(A=\frac{161}{91}=\frac{23}{13}\)
\(B=\frac{11}{15}\times\frac{4}{11}+\frac{11}{15}\times\frac{5}{11}+\frac{11}{15}\times\frac{2}{11}\)
\(B=\frac{4}{15}+\frac{1}{3}+\frac{2}{15}\)
\(B=\frac{11}{15}\)
\(C=\left(\frac{19}{64}-\frac{33}{22}+\frac{24}{51}\right)\times\left(\frac{1}{5}-\frac{1}{15}-\frac{2}{15}\right)\)
\(C=\frac{-797}{1088}\times0\)
\(C=0\)
\(D=\frac{8}{13}\times\frac{7}{12}+\frac{8}{13}\times\frac{5}{12}-\frac{1}{12}\)
\(D=\frac{14}{39}+\frac{10}{39}-\frac{1}{12}\)
\(D=\frac{83}{156}\)
bạn biết câu náy không (24 + 11) . {546 - [14 . (64 - 2^{3}3) : 2]} =
a) = 1/10 - 1/11 + 1/11 -1/12 + 1/12 - 1/13 +1/13 1/14 +...+ 1/78 - 1/79
= 1/10 - 1/79
= máy tính ok
mấy câu khác bn làm tương tự là đc nhưng nhớ nhanh thêm khoảng cách giữa các mẫu nha
a)\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)=4\left(\frac{1}{7}-\frac{1}{135}\right)=4.\frac{128}{945}=\frac{456}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)=4\left(\frac{1}{8}-\frac{1}{506}\right)=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{394}\right)=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Sửa đề\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{820}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1640}\right)=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{40}-\frac{1}{41}\right)=2\left(1-\frac{1}{41}\right)=2.\frac{40}{41}=\frac{80}{41}\)