Cho đơn thức 3xy2.
- Hãy viết một đa thức có hạng tử đều chia hết cho 3xy2;
- Chia các hạng tử của đa thức đó cho 3xy2;
- Cộng các kết quả vừa tìm được với nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)P=3,5.x^2y-3.x.y^2+1,5.x^2.y+2.x.y+3.x.y^2\)
\(P=5.x^2.y+2.x.y\)
\(b)\text{Thay x=1;y=2 vào biểu thức P,ta được:}\)
\(5.1^2.2+2.1.2\)
\(=5.1.2+2.1.2\)
\(=10+4=14\)
\(\text{Vậy giá trị của biểu thức P tại x=1;y=2 là:14}\)
a.\(P=3,5x^2y-3xy^2+1,5x^2y+2xy+3xy^2\)
\(P=5x^2y+2xy\)
b. Thế x=1; y=2 vào P, ta được:
\(5.1^2.2+2.1.2=10+4=14\)
\(\text{P= ax⁴y³ +10xy² +4y³ -2x⁴y³ -3xy²+bx³y⁴}\)
\(\text{P=}\text{ax⁴y³-2x⁴y³ +bx³y⁴ +10xy² -3xy² +4y³}\)
\(\text{P=}\text{(a-2)x⁴y³ + bx³y⁴ +(10-3)xy² +4y³}\)
\(\text{P=}\text{ (a-2)x⁴y³ + bx³y⁴ +7xy² +4y³}\)
\(\text{Để P có bậc 3 thì:}\)
\(a-2=0\Leftrightarrow a=2\)
\(b=0\Leftrightarrow b=0\)
\(\text{Vậy a=2,b=0 thì P có bậc là 3}\)
.đơn giản mà bạn:
(18x^3y^5 - 11x^7y^2 ) : 3xy^2
= 6x^2y^3 + 11/3x^6
(3x2y2-6xy3+12x2y3):3xy2
=(3x2y2:3xy2)+(-6xy3:3xy2)+(12x2y3:3xy2)
=x-2y+4xy
chúc bn hk tốt
a: =3x^2y^3-2x^3y^2-2xy^4+3x^3y^2+3x^2y^3+5x^4y-5x^3y^2
=6x^2y^3-4x^3y^2-2xy^4+5x^4y
Bậc là 5
b: =x^4-y^4-3x^2y^2-3xy^3+5x^2y^2+x^3y-x^2y^2
=x^4-y^4+x^2y^2-3xy^3+x^3y
Bậc là 4
c: =3x^3y+3x^2y^2-7x^3y+7xy^3-3xy^2+2x^2y^2+5xy+x
=-4x^3y+5x^2y^2+7xy^3-3xy^2+5xy+x
bậc là 4
(-9x3y6 + 18xy4 + 7x2 y2 ) : 3xy2
= (-9x3y6 : 3xy2 ) + (18xy4 : 3xy2 ) + (7x2y2 : 3xy2 )
= -3x2 y4 + 6y2 + 7/3 x