1/15+1/35+1/63+1/99+.............+1/999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{49}{303}\)
1/3x5 +1/5x7+1/7x9 +1/9x11+...+1/99x101
1/3-1/5+1/5-1/7+...+1/99-1/101
1/3-1/101
98/303
Đặt phép tính cần tìm là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=1-\dfrac{1}{13}\)
\(2A=\dfrac{12}{13}\)
\(A=\dfrac{6}{13}\)
\(A=\dfrac{1}{3}+\dfrac{1}{15}+...+\dfrac{1}{143}\\ =\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\\ =\dfrac{1}{2}\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\\ =\dfrac{1}{2}\times\dfrac{12}{13}\\ =\dfrac{6}{13}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{9.11}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)(tắt 1 bước nha)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{9}-\frac{1}{11}\)
\(2A=\frac{1}{3}-\frac{1}{11}\)
\(2A=\frac{8}{33}\)
\(\Rightarrow A=\frac{4}{33}\)
Vậy A=_____________
1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11)+... + 1/(99x101)
(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+...+1/99-1/101) : 2
(1/3 - 1/101) : 2 = 98/303 : 2
49/303
Bạn đưa về dãy tổng
\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\)
Có thể tính nhanh vì đây là dãy đặc biệt
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
Thử các mẫu số ta thấy
Các mẫu số có dạng x(x + 2)
Số 999 khác dạng x(x + 2)
Bạn xem lại đề
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303