Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+....+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+....+\frac{1}{99.101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\) (vì tất cả các phân số khác ngoài 1/3 và 1/101 đều đã bị cộng với số đối với nó = 0)
1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11)+... + 1/(99x101)
(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+...+1/99-1/101) : 2
(1/3 - 1/101) : 2 = 98/303 : 2
49/303
Bạn đưa về dãy tổng
\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\)
Có thể tính nhanh vì đây là dãy đặc biệt