K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

a. Ta có: \(BC^2=100 \)
               \(AB^2+AC^2=100\)
Vì \(AB^2+AC^2=BC^2\left(=100\right)\)
Nên ABC vuông tại A (Pytago đảo)
b. Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lý 3- HTL ta có:
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\)
=> AH=4,8
\(c.SinB=\dfrac{6}{10}=\dfrac{3}{5}=>B\cong37\)
\(SinC=\dfrac{8}{10}=\dfrac{4}{5}=>53\)
d. Ta có: Tam giác AHC vuông tại H
Áp đụng định lý Pytago vào tam giác ta được
\(HC^2=AC^2-AH^2\)
         = 36-23,04=12,96
=>HC=3,6
\(SAHC=\dfrac{1}{2}\cdot AH\cdot HC=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\)

18 tháng 4 2023

Với 9 tia chung gốc số góc tạo thành là

A. 16 góc

B. 72 góc

C. 36 góc 

D. 42 góc

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

HA=9*12/15=108/15=7,2cm

HB=9^2/15=81/15=5,4cm

\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC đồng dạng với ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

b:ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

\(BA^2=BH\cdot BC\)

=>\(BH=\dfrac{12^2}{20}=7,2\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+7,2^2=12^2\)

=>\(HA^2=12^2-7,2^2=9,6^2\)

=>HA=9,6(cm)

c: Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{CD}=\dfrac{BA}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

=>\(S_{ABD}=\dfrac{3}{5}\cdot S_{BCD}\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có

góc C chung

=>ΔAHC đồng dạng với ΔHKC

b: Xet ΔHAC vuông tại H có HK là đường cao

nên HK^2=AK*KC

c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)

CK=4^2/5=3,2cm

=>AK=1,8cm

=>HK=2,4cm

\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)

d: tan B=AC/AB

sin B=AC/BC

AB<BC(ΔABC vuôngtại A)

=>AC/AB>AC/BC

=>tanB>sin B

b: Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16

=>AH=9,6cm

Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên góc B=53 độ

=>góc C=37 độ

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5

nên góc B=53 độ

=>góc C=37 độ

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16=192

=>AH=9,6cm

c: 

HB=AB^2/BC=12^2/20=7,2cm

HC=16^2/20=12,8cm

ΔAHB vuông tại H có HE là đường cao

nên HE*AB=AH*HB

=>HE*12=7,2*4,8

=>HE=2,88(cm)

ΔAHC vuông tại H có FH là đường cao

nên HF*AC=HA*HC

=>HF*16=4,8*12,8

=>HF=12,8*0,3=3,84(cm)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình học thì bạn nên tách mỗi bài 1 post nhé.

23 tháng 7 2021

dạ