K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

Với 9 tia chung gốc số góc tạo thành là

A. 16 góc

B. 72 góc

C. 36 góc 

D. 42 góc

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

HA=9*12/15=108/15=7,2cm

HB=9^2/15=81/15=5,4cm

\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

12 tháng 4 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

b, Xét tam giác CHI và tan giác CAH có 

^AIH = ^CHA = 900

^C _ chung 

Vậy tam giác CHI ~ tam giác CAH (g.g)

\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)

12 tháng 4 2021

hình bạn tự vẽ 

a) Xét ΔHBA và ΔABC có :

^H = ^A = 900

^B chung

=> ΔHBA ~ ΔABC (g.g)

b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm

Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC

=> BC = AB2/HB = 152/9 = 25cm

Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm

=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2

c) mình chưa nghĩ ra :v 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

còn tính diện tích nx bn ơi

 

 

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB