Cho tam giác ABC vuông tại A, ∠B = 30o. Chứng minh rằng AC = (1/2)BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
a) Xét tam giác ABC và tam giác HAC có:
BAC = AHC =90
ABC = HAC (cùng phụ với HAB)
=> ABC đồng dạng HAC (g.g)
b) Vì ABC đồng dạng HAC
=> AB/BC = AH/AC
=> AB.AC=BC.AH
c) Vì AB.AC = BC.AH
=> AB^2.AC^2= BC^2 . AH^2
Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)
=> AB^2.AC^2= (AB^2+AC)^2.AH^2
=> 1/AH^2 =1/AB^2 +1/AC^2
a) cho ac rùi tính ac làm j nữa z bạn
b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có
bd chung
góc abd = góc ebd ( bd là tia phân giác của góc abc )
=> tam giác abd=tam giac ebd ( ch-gn)
Với tam giác ABC có góc \(A=90^o\) và góc \(B=30^o\)
=> góc \(C=60^o\)
Gọi M là trung điểm của BC
mà \(\Delta\) ABC có góc \(A=90^o\)
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M
mà góc \(C=60^o\)
=> \(\Delta\) AMC đều
=>AC=MC
mà MC =1/2.BC
=> AC = 1/2 BC
Với tam giác ABC có góc \(A=90^o\) và góc \(B=60^o\)
=> góc \(C=60^o\)
Gọi M là trung điểm của BC
mà tam giác ABC có góc \(A=90^o\)
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M
mà góc \(C=60^o\)
=> tam giá AMC đều
=>AC=MC
mà MC =1/2.BC
=> AC = 1/2 BC
Tick nha
a, xét tam giác ABM và tam giác KBM có :BM chung
góc ABM = góc KBM do BM là pg của góc ABC (gt)
AB = BK (gt)
=> tam giác ABM = tma giác KBM (c-g-c)
b, tam giác ABM = tam giác KBM (Câu a)
=> góc MAB = góc MKB (đn)
góc MAB = 90
=> góc MKB = 90
xét tam giác EMA và tam giác CMK có : góc CMK = góc EMA (đối đỉnh)
MA = MK do tam giác ABM = tam giác KBM (câu a)
góc MAE = góc MKC = 90
=> tam giác EMA = tam giác CMK (cgv-gnk)
=> MA = MC (đn)
=> tam giác EMC cân tại M (đn)
c, tam giác ABC vuông tại A (gt) => góc ABC + góc ACB = 90 (đl)
góc ACB = 30 (gt)
=> góc ABC = 60 (1)
BA = BK (gt)
AE = CK do tam giác MEA = tam giác MCK (câu b)
AE + AB = BE
CK + KB = BC
=> BE = BC
=> tam giác BEC cân tại B (đn) và (1)
=> tam giác BEC đều (dh)
+) Tam giác ABC vuông tại A nên: ∠B + ∠C = 90º
Mà ∠B = 30º ⇒ ∠C = 60º
+) Lấy điểm D trên cạnh BC sao cho ∠CAD = 60º
Tam giác ACD có ∠C = ∠CAD = 60º nên ACD là tam giác đều.
Suy ra AC = AD = DC và ∠DAC = 60º (1)
+) Ta có: ∠DAC + ∠DAB = ∠BAC = 90º
⇒ ∠DAB = 90º - 60º = 30º
+) Tam giác ABD có ∠DAB = ∠B = 30º nên ABD là tam giác cân.
Suy ra AD = BD. (2)
Từ (1) và (2) suy ra AC = DC = BD, tức là AC = BC/2