K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a) cho ac rùi tính ac làm j nữa z bạn 

b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có 

bd chung 

góc abd = góc ebd ( bd là tia phân giác của góc abc )

=> tam giác abd=tam giac ebd ( ch-gn)

6 tháng 8 2017

c) có tam giác abd = tam giácđeb( ch-gn)

=> ab=eb( 2 cạnh tương ứng )

=> tam giác abe cân tại b ( dhnb tam giác cân )

d)có tam giác abd = tam giácđeb( ch-gn)

=> ad=ed(  2 cạnh tương ứng ) (1)

có tam giác dec vuông tại e

=> ed<dc( dc là cạnh huyền ) (2)

(1)(2)=> ad<dc

https://olm.vn/hoi-dap/detail/86239356392.html

Bổ sung đề: \(\widehat{ABC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)

nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔABC vuông tại A có 

\(\cos\widehat{B}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)

Vậy: BC=10cm

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>BA=BE và DA=DE

Xét ΔBAE có BA=BE

nên ΔBAE cân tại B

c: Ta có: DA=DE
DE<DC(ΔDEC vuông tại E nên DC là cạnh huyền)

=>DA<DC

d: BA=BE

=>B nằm trên đường trung trực của AE(1)

DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD vuông góc với AE tại trung điểm của AE

=>BD\(\perp\)AE tại M và M là trung điểm của AE

CG=2GM nên \(GM=\dfrac{1}{2}CG\)
CG+GM=CM

=>\(\dfrac{1}{2}CG+CG=CM\)

=>\(CM=\dfrac{3}{2}CG\)

=>\(CG=\dfrac{2}{3}CM\)

 

Xét ΔEAC có

CM là đường trung tuyến

\(CG=\dfrac{2}{3}CM\)

Do đó: G là trọng tâm của ΔEAC

Xét ΔEAC có

G là trọng tâm

N là trung điểm của EC

Do đó: A,G,N thẳng hàng

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

d: Ta có: ΔABD=ΔEBD

nên DA=DE
hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔABE có BA=BE và \(\widehat{ABE}=60^0\)

nên ΔABE đều

c: Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=cos60=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

Có ai biết ko chỉ mình với ạ

 

18 tháng 3 2022

Bài 1:

a, Xét tg ABD và tg EBD, có: 

góc A= góc E(90o)

BD chung

góc ABD= góc DBE(tia phân giác)

=>tg ABD= tg EBD.

b, Ta có: tg ABD= tg DBE(cm câu a)

=>AB=BE(2 cạnh tương ứng)

=>tg ABE cân tại B.

Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.

c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)

=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o

Vì tg ABE là tg đều, nên góc A=60o.

Ta có: góc A=góc BAE+ góc AEC.

=>90o=60o+ góc AEC=30o.

=> góc AEC= góc C(=30o)

=>tg AEC cân tại E.

=>AE=EC.

Mà AE=5cm(tg đều), nên EC=5cm.

Vậy, độ dài cạnh BC là: 

BE+EC=5+5=10.

=>BC= 10cm.

 

a: AC=4cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó; ΔBAD=ΔBHD

c: Ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC

a: AC=4cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó; ΔBAD=ΔBHD

c: Ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC