Cho ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. a) Chứng minh MN là đường trung bình của ∆ABC. Từ đó suy ra tứ giác BMNC là hình thang cân. (1 điểm) b) Gọi AP là đường trung tuyến của ∆ABC; Q là điểm đối xứng với A qua P và K là giao điểm của BN và AP. Chứng minh tứ giác ABQC là hình bình hành và AQ = 3AK. (1 điểm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MNCB là hthang
Mà \(\widehat{B}=\widehat{C}\) nên MNCB là htc
MN là đtb cm trên rồi
a: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
a) \(\Delta ABC\) có: M là trung điểm AB (gt)
N là trung điểm AC (gt)
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
\(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
mà P là trung điểm BC
P là trung điểm AQ
\(\Rightarrow ABQC\) là hình bình hành (đpcm)
còn AQ = 3AK đâu bạn