K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\Delta ABC\) có: M là trung điểm AB (gt)
                         N là trung điểm AC (gt)
                \(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
                \(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
                         \(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
                        mà P là trung điểm BC
                              P là trung điểm AQ
                     \(\Rightarrow ABQC\) là hình bình hành (đpcm)

5 tháng 11 2021

còn AQ = 3AK đâu bạn

26 tháng 12 2021

a: Xét ΔABC có

AM/AB=AN/AC

Do đó: MN//BC

hay BMNC là hình thang

mà BN=CM

nên BMNC là hình thang cân

26 tháng 12 2021

\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh

Do đó O là trung điểm AP và BD

Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm

Do đó \(DG=\dfrac{2}{3}DO\)

Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2(1)

hay BMNC là hình thang

b: Xét ΔGBC có 

E là trung điểm của GB

F là trung điểm của GC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(2)

Từ (1) và (2) suy ra MN//FE và MN=FE

hay MNEF là hình bình hành

c: Xét ΔABC có 

BN,CM là các đường trung tuyến

BN cắt CM tại G

Do đó: G là trọng tâm của ΔABC

mà AG cắt BC tại H

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC

M là trung điểm của BA

Do đó: HM là đường trung bình

=>HM//AC và HM=AC/2

=>HM=AN và HM//AN

=>AMHN là hình bình hành

mà \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật