Tính giá trị của H bằng:1/1.2+1/1.3+......+1/2021.2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(A=2021-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}=\right)\)
\(=2021-\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{2022-2021}{2021.2022}\right)=\)
\(=2021-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)=\)
\(=2021-\left(1-\dfrac{1}{2022}\right)=2021-\dfrac{2021}{2022}\)
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.
=1/1-1/2022
=2021/2022
-Nghỉ Tết đi :)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)=\(1-\dfrac{1}{2022}\)=\(\dfrac{2021}{2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)
\(=\dfrac{1}{3}-\dfrac{1}{111}=\dfrac{12}{37}\)
\(P=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(P=\frac{1}{1}-\frac{1}{100}\)
\(P=\frac{99}{100}\)
\(HT\)
\(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(P=1+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+..+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)+\dfrac{-1}{100}\)
\(P=1+0+0+....+0+\dfrac{-1}{100}\)
\(P=1+\dfrac{-1}{100}\)
\(P=\dfrac{99}{100}\)
c; 17\(\dfrac{2}{31}\) - (\(\dfrac{15}{17}\) + 6\(\dfrac{2}{31}\))
= 17 + \(\dfrac{2}{31}\) - \(\dfrac{15}{17}\) - 6 - \(\dfrac{2}{31}\)
= (17 - 6) - \(\dfrac{15}{17}\) + (\(\dfrac{2}{31}\) - \(\dfrac{2}{31}\))
= 11 - \(\dfrac{15}{17}\)+ 0
= \(\dfrac{172}{17}\)
b; 130\(\dfrac{25}{28}\) + 120\(\dfrac{17}{35}\)
= 130 + \(\dfrac{25}{28}\) + 120 + \(\dfrac{17}{35}\)
= (130 + 120) + (\(\dfrac{25}{28}\) + \(\dfrac{17}{35}\))
= 250 + (\(\dfrac{125}{140}\) + \(\dfrac{68}{140}\))
= 250 + \(\dfrac{193}{140}\)
= 250\(\dfrac{193}{140}\)
come on
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2021.2022}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{2021}-\frac{1}{2022}=1-\frac{1}{2022}=\frac{2021}{2022}\)
#Y/n
Mik nghĩ bạn viết đề sai nên ms làm vậy.