Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-n\right)\)
Tích trên có đúng 2021 thừa số nên n=2021
=>\(A=\left(2021-1\right)\left(2021-2\right)\cdot\left(2021-3\right)\cdot...\cdot\left(2021-2021\right)\)
\(=2020\cdot2019\cdot2018\cdot...\cdot0\)
=0
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
Sửa đề : \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{7}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2}{7}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}\right)}\right):\dfrac{2021}{2020}\\ =\left(\dfrac{2}{7}-\dfrac{2}{7}\right):\dfrac{2021}{2022}=0\)
\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)
\(=a^2+b-2a^2-b+2ab+4042\)
\(=-a^2+2ab+4042\)
\(=-a\left(a-2b\right)+4042\)
Đề cho \(a-2b=2021\)
\(\Rightarrow P=-a.2021+4042\)
\(=-2021a+4042\)
Vậy \(P=-2021a+4042\)
a) Ta có: \(\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|+9\ge9\forall x\)
Dấu '=' xảy ra khi x=2021
b) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left|y+1\right|\ge0\forall y\)
Do đó: \(\left|x-2\right|+\left|y+1\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|+\left|y+1\right|+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(2;-1)
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)