3\(^x\)+ 5\(^y\)+ 3x+ 5y= 651
tìm x, y nguyên dương
mình cần gấp nên các bạn giúp mình gấp nha !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)-1\)
\(M=3x^2-15xy-3y^2+15xy-3x^2+3y^2\)
\(M=0\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có x-y+2xy=3<=>2x-2y+4xy=6<=>2x(2y+1)-(2y+1)=5<=>(2x-1)(2y+1)=7
Vì (2x-1)(2y+1)=7 => \(2x-1\inƯ\left(7\right)\)={1,-1,7,-7}{}
=>\(x\in\){1,0,4,-3}=> y\(\in\){3,-4,0,-1}
Ta có:
x - y + 2xy = 3
Suy ra 2x - 2y + 4xy = 6
Suy ra 2x( 2y + 1 ) - ( 2y + 1 ) = 5
Suy ra ( 2x - 1 ) ( 2y + 1 ) = 7
Vì ( 2x - 1 ) ( 2y + 1 ) = 7
Suy ra 2x -1 thuộc Ư (7) = { 1 ; -1 ; 7 ; -7 }
Suy ra x thuộc { 1 ; 0 ; 4 ; -3 }
y thuộc { 3 ; -4 ; 0 ; -1 }
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\text{và }3x-5y+6z=9\)
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)
\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^3-3x^2+5x+2007=0
nên \(x\simeq-11,57\)
y^3-3y^2+5y-2013=0
nên \(y\simeq13,57\)
=>x+y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)