K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Ta có:

\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)-1\)

\(M=3x^2-15xy-3y^2+15xy-3x^2+3y^2\)

\(M=0\left(đpcm\right)\)

26 tháng 6 2017

M=3x2-15xy-3y2+15xy-3x2+3y2-1

M=-1

9 tháng 5 2017

ta có x-y+2xy=3<=>2x-2y+4xy=6<=>2x(2y+1)-(2y+1)=5<=>(2x-1)(2y+1)=7

Vì (2x-1)(2y+1)=7 => \(2x-1\inƯ\left(7\right)\)={1,-1,7,-7}{}

=>\(x\in\){1,0,4,-3}=> y\(\in\){3,-4,0,-1}

10 tháng 5 2017

Ta có:

x - y + 2xy = 3

Suy ra 2x - 2y + 4xy = 6

Suy ra 2x( 2y + 1 ) - ( 2y + 1 ) = 5

Suy ra ( 2x - 1 ) ( 2y + 1 ) = 7

Vì ( 2x - 1 ) ( 2y + 1 ) = 7

Suy ra 2x -1 thuộc Ư (7) = { 1 ; -1 ; 7 ; -7 }

Suy ra x thuộc { 1 ; 0 ; 4 ; -3 }

           y thuộc { 3 ; -4 ; 0 ; -1 }

24 tháng 3 2020
Giúp mình với ạ,mình đang cần.
2 tháng 12 2016

\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)

\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:

\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)

x^3-3x^2+5x+2007=0

nên \(x\simeq-11,57\)

y^3-3y^2+5y-2013=0

nên \(y\simeq13,57\)

=>x+y=2

17 tháng 4 2018

\(x=3;y=7\)

3 và 7 đều là số nguyên tố

k nhé

17 tháng 4 2018

Cảm ơn bạn nhiều nhưng mình cần cả lời giải!

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)