sin của góc (cung) lượng giác nào bằng 1/2
A. - π 6
B. 25 π 6
C. 60 o
D. - 150 o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có cot 60 0 = 1 3
Lại có: - 300 o = 60 o – 360 o
n ê n c o t ( - 300 o ) = cot 60 0 = 1 3
Đáp án A
Khi góc ( cung) lượng giác thuộc góc phần tư thứ (I) hoặc (III) thì hai giá trị sin và cosin của nó cùng dấu nhau.
Điểm M biểu diễn điểm cuối của cung − 3 π 5 nằm trong góc phần tư thứ (III).
Đáp án C
Khi góc (cung) lượng giác thuộc góc phần tư thứ (II) hoặc (IV) thì hai giá trị sin và cosin của nó trái dấu nhau.
Đáp án A
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
a: Ta có: ΔOBA cân tại O
mà OI là đường cao
nên Ilà trung điểm của BA
=>MN là trung trực của AB
b: Xét tứ giac AMBO có
I là trung điểm chung của AB và MO
AB vuông góc với MO
Do đo: AMBO là hình thoi
c: AM=AO=R
\(AN=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Đáp án B