K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Nghiệm của đa thức f(x) = 3x - 6 là x = 2

Để x = 2 là nghiệm của g(x) thì g(2) = 0 ⇒ 10a - 1 = 0 ⇒ a = 1/10. Chọn A

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6

1: f(-1)=0 

=>1+m-1+3m-2=0 và 

=>4m-2=0

=>m=1/2

2: g(2)=0

=>2^2-4(m+1)-5m+1=0

=>4-5m+1-4m-4=0

=>-9m+1=0

=>m=1/9

4: f(1)=g(2)

=>1-(m-1)+3m-2=4-4(m+1)-5m+1

=>1-m+1+3m-2=4-4m-4-5m+1

=>2m-2=-9m+1

=>11m=3

=>m=3/11

3:

H(-1)=0

=>-2-m-7m+3=0

=>-8m=-1

=>m=1/8

5: g(1)=h(-2)

=>1-2(m+1)-5m+1=-8-2m-7m+3

=>-5m+2-2m-2=-9m-5

=>-7m=-9m-5

=>2m=-5

=>m=-5/2

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)

2:

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

=>góc MAB=góc MBA

3:

a: Hệ số là -2/3

Biến là x^2;y^7

Bậc là 9

b: \(=3x^2y^2\left(-2\right)xy^5=-6x^3y^7\)

19 tháng 4 2019

Đa thức f(x) có nghiệm

Khi f(x)=(x-1)(x+2)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

Sau đó bạn thay từng cái vô và vừa đặt =0 để tìm a,b.

Bài 9:

a: f(-4)=0

=>-4(m-1)+3m-1=0

=>-4m+4+3m-1=0

=>-m+3=0

=>m=3

b: f(-5)=-1

=>-5(m-1)+3m-1=-1

=>-5m+5+3m-1=-1

=>-2m+4=-1

=>-2m=-5

=>m=5/2

8 tháng 11 2019

Ta có f(x) = 2x - 2 = 0 khi x=1

Để g(x) có nghiệm là 1 thì g(1) = 0 hay a.12-1 = 0 ⇒ a = 1. Chọn D

6 tháng 5 2018

+) Để f (x) có nghiệm thì : f (x) = 0

=> \(\left(x-1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy x = 1 và x = \(-2\) là nghiệm của đa thức f (x)

Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = \(-2\) là nghiệm của g (x)

\(\Rightarrow g\left(1\right)=1^3+a\cdot1^2+b\cdot1+2=0\\ \Rightarrow1+a+b+2=0\\ \Rightarrow3+a+b=0\\ \Rightarrow b=-3-a\left(1\right)\)

+) \(g\left(-2\right)=\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\\ \Rightarrow-8+4a-2b+2=0\\ \Rightarrow2\cdot\left(-4\right)+2a+2a-2b+2=0\\ \Rightarrow2\cdot\left(-4+a+a-b+1\right)=0\\ \Rightarrow2\cdot\left(-3+2a-b\right)=0\\ \Rightarrow\left(-3+2a-b\right)=0\)

=> 2a \(-\) b = 3 \(\left(2\right)\)

+) Thay \(\left(1\right)vào\left(2\right)\) ta được :

\(2a-\left(-3-a\right)=3\\ \Rightarrow2a+3+a=3\\ \Rightarrow3a=3-3\\ \Rightarrow3a=0\\ \Rightarrow a=0\)

Do \(2a-b=3 \Rightarrow2\cdot0-b=3\Rightarrow0-b=3\Rightarrow b=-3\)

Vậy a = 0 ; b = \(-\)3