Cho tam giác ABC cân, A B = 3 c m , B C = 4 c m
b. Tính chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+AC=8+6+10=24\left(cm\right)\)
A B C H K 60
a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC
\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC
\(\Rightarrow AH=HC\)
Tương tự \(\Rightarrow AK=KB\)
\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)
\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )
Lại có \(\Delta ABC\)đều
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )
Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân
b) Xét \(\Delta ABC\)đều \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)
Ta có \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\)
Mà AB = AC \(\Rightarrow AK=AH\)
Lại có \(\widehat{KAH}=60^o\)
\(\Rightarrow\Delta AHK\)đều
Mà \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)
\(\Rightarrow AK=AH=HK=4\left(cm\right)\)
\(C_{BCHK}=KH+HC+BC+BK\)
\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)
\(\Leftrightarrow C_{BCHK}=4+4+8+4\)
\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)
Vậy ...
b. Có hai trường hợp
Nếu AC = 4cm, AB = 3cm, BC = 4cm. Thì chu vi của tam giác là: 4 + 3 + 4 = 11cm (1 điểm)
Nếu AC = 3cm, AB = 3cm, BC = 4cm. Thì chu vi của tam giác là: 3 + 3 + 4 = 10cm (1 điểm)