Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a ) Vì tam giác ABC có chu vi bằng 24
=> AB + AC + BC = 24
hay a + b + c = 24
Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5
=> a/3 = b/4 = c/5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2
=> a = 6 ; b = 8 ; c = 10
b ) Vì a = 6 => a2 = 36
b = 8 => b2 = 64
c = 10 => c2 = 100
MÀ 100 = 36 + 64 hay c2 = a2 + b2
Xét tam giác ABC có c2 = a2 + b2 ( cmt )
=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )
Vậy ...
Bài 2 :
Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt
Khi đó :
\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )
\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )
Từ ( 1 ) và ( 2 ) ta có dpcm
b ) ( chứng minh tương tự )
Tam giác ABC cân tại A nên AB = AC , góc B = góc C
Xét tam giác ABH và ACH có :
góc B = góc C ; AB = AC ; Góc BAH = CAH ( vì AH là tia phân giác của góc A )
=> tam giác ABH = tam giác ACH ( g.cg )
=> BH = CH ( hai cạnh tương ứng )
=> H là trung điểm của BC. => AH là đường đường trung tuyến của tam giác ABC .
d, Vì tam giác ABH = tam giác ACH => góc BHA = góc CHA (1) ( 2 góc tương ứng )
ta lại có : góc BHA + góc CHA = 180 độ (2) ( hai góc kề bù )
Từ (1) và (2) suy ra góc BHA = góc CHA = 90 độ => tam giác AHB vuông tại H
áp dụng định lí Pytago cho tam giác vuông AHB ta có : \(AB^2=AH^2+HB^2\Rightarrow AH^2=AB^2-HB^2.\)
=> \(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\)(cm)
A B C M
Th1: AB<AC (hình hơi lệch chuẩn chút :P)
giá sử đường thẳng qua đỉnh A chia tam giác ABC thành hai tam giác cân ABM cân tại A và ACM cân tại M
khi đó (ko viết mũ góc tự hiểu ha)
=> B=M
Lại có M=C+MAC=2C
=>B=2C, lại có A=75
=>B=70
C=35
T.tự Th AC<AB
còn AB=AC=>B=C=52,5
b. Có hai trường hợp
Nếu AC = 4cm, AB = 3cm, BC = 4cm. Thì chu vi của tam giác là: 4 + 3 + 4 = 11cm (1 điểm)
Nếu AC = 3cm, AB = 3cm, BC = 4cm. Thì chu vi của tam giác là: 3 + 3 + 4 = 10cm (1 điểm)