K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Tam giác ABC cân tại A nên AB = AC , góc B = góc C 

Xét tam giác ABH và ACH có :

góc B = góc C ;    AB = AC      ;    Góc BAH = CAH ( vì AH là tia phân giác của góc A )

=>  tam giác ABH = tam giác ACH ( g.cg )

=> BH = CH ( hai cạnh tương ứng ) 

=> H là trung điểm của BC.  => AH là đường đường trung tuyến của tam giác ABC .

d, Vì  tam giác ABH = tam giác ACH => góc BHA = góc CHA  (1)       ( 2 góc tương ứng )

ta lại có : góc BHA + góc CHA  = 180 độ  (2)    ( hai góc kề bù ) 

Từ (1) và (2) suy ra góc BHA = góc CHA = 90 độ => tam giác AHB vuông tại H

áp dụng định lí Pytago cho tam giác vuông AHB ta có : \(AB^2=AH^2+HB^2\Rightarrow AH^2=AB^2-HB^2.\)

                                                                                      => \(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\)(cm) 

9 tháng 6 2016
a) Vì ∆ABC cân tại Ạ => AB = AC ( tính chất ∆ cân ) Vì AH là tia phân giác của góc BAC => góc BAH = góc CAH Xét ∆ AHB và ∆ AHC có : +) AB = AC (cmt) +) Góc BAH = góc CAH (cmt) +) Ah chúng Từ đó suy ra ∆ABH = ∆ACH b) Vì ∆ABH = ∆ACH (cmt) => BH = CH ( hai cạnh tương ứng) c) Vì ∆ABC cân tại Ạ (gt) mà AH là đường phân giác của ABC => AH là đường trung tuyến của ∆ABC ( tính chất ∆ cân ) d) Vì AH là đường cao của ∆ABC ( chứng minh tương tự như chứng minh AH là đường trung tuyến của ∆ABC ) => Góc AHB = 90° => ∆ABH vuông tại H Xét ∆ABH vuông tại H có AB^2 = AH^2 + HB^2 ( Áp dụng định lý Pytago ) Thấy số vào ta sẽ tìm được AH = 12 cm
29 tháng 5 2015

mjk giải dc mà hình chán quá

14 tháng 2 2016

Vẽ hình ra đi bn

14 tháng 2 2016

Mik ko vẽ đc vì mik len OLM bằng điện thoại 

13 tháng 4 2016

a, xét tam giác abh và tam giác ach có 

góc ahb =góc ahc

ab=ac 

ah chung

=>tam giác abh =tam giác ach (ch.cgv)

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O