Không quy đồng hay so sánh 2 phân số sau
2009/2010 và 2010/2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2010}{2011}\) và \(\dfrac{2011}{2012}\)
Ta có:
\(1-\dfrac{2010}{2011}=\dfrac{1}{2011}\)
\(1-\dfrac{2011}{2012}=\dfrac{1}{2012}\)
Vì \(\dfrac{1}{2011}>\dfrac{1}{2012}\) nên \(\dfrac{2010}{2011}< \dfrac{2011}{2012}\)
20112010 và 2011201220122011
Ta có:
1−20102011=120111−20112010=20111
1−20112012=120121−20122011=20121
Vì 12011>1201220111>20121 nên 20102011<2011201220112010<20122011
#)Giải :
Ta có : \(1-\frac{2010}{2011}=\frac{1}{2011}\)
\(1-\frac{2011}{2012}=\frac{1}{2012}\)
Vì \(\frac{1}{2011}>\frac{1}{2012}\Rightarrow\frac{2010}{2011}>\frac{2011}{2012}\)
\(\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(2011\)<\(2012\)\(\Rightarrow\frac{1}{2011}\)>\(\frac{1}{2012}\)
\(\Rightarrow\frac{2010}{2011}\)<\(\frac{2011}{2012}\)
+ta có 10^2010=10...0(2010 số 0)
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2010 số 0)= -90/10...0(2011 số 0)[nhân tử,mẫu cho 10]
suy ra A=-90/10...0(2011 số 0)+-19/10...0(2011 số 0)= -109/10...0(2011 số 0) [1]
+-19/10...0(2010 số 0)= -190/10...0(2011 số 0)[nhân tử,mẫu cho 10]
và 10^2011=10...0(2011 số 0)
suy ra -9/10...0(2011 số 0)+-190/10...0(2011 số 0)= -199/10...0(2011 số 0) [2]
vì -109>-199 suy ra [1]>[2]
K CHO MIK VS BẠN ƠIIIIIIIIIIIIIIIIIII
\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)
\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)
\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)
\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)
Làm tương tự nhé
ta thấy -b > -a nên a>b
Ta có: \(\frac{2012}{2011}=1-\frac{1}{2011}\)
\(\frac{2011}{2010}=1-\frac{1}{2010}\)
Vì \(\frac{1}{2011}>\frac{1}{2010}\)nên \(\frac{2012}{2011}>\frac{2011}{2010}\)
\(\Rightarrow\frac{2012}{2011}>\frac{2011}{2010}\)
\(A=\dfrac{-9\cdot10+\left(-19\right)}{10^{2011}}=\dfrac{-28}{10^{2011}}\)
\(B=\dfrac{-9\cdot10-19}{10^{2011}}=\dfrac{-109}{10^{2011}}\)
=>A>B
Xét dạng tổng quát : so sánh a/b và (a+k)/(b+k) với a,b,k là các số dương
Ta có : (a/b) *(1/b) =1/ab
(a+k)/(b+k) * (1/b) = (a+k)/(ab+ak)
lại nhân với 1/(a+k)
ta có (1/ab)*1/(a+k) = 1/(a*a*b+a*b*k) (1)
(a+k)/(ab+ak) * 1/(a+k) = 1/(ab+ak) (2)
xét thấy (1) < (2) nên => (a+k)/(b+k) > a/b
kết luận 2009/2010 < 2010/2011
Lấy 1 trừ từng phân số
\(1-\frac{2009}{2010}=\frac{1}{2010};1-\frac{2010}{2011}=\frac{1}{2011}\)
Vì 1/2011 < 1/2010
Nên \(\frac{2009}{2010}<\frac{2010}{2011}\)