K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

a ) Ta có : m ( n + p ) - n ( m - p ) = mn + mp - mn + np

                                                  = mp + np = p ( m + n )

=> m ( n + p ) - n ( m - p ) = ( m + n ) p

 

 

b ) Ta có : m ( n - p ) - m ( n + q ) = mn - mp - mn - mq

                                                 = - mp - mq = - m ( p + q )

=> m ( n - p ) - m ( n + q ) = - m ( p + q )

< Tích nha , chắc đúng 100 % luôn đó > 

3 tháng 1 2016

a) m(n+p)-n(m-p)

mn+mp-mn+np= mp+np (đpcm)

3 tháng 1 2016

?????????????????????????????????????????????

8 tháng 11 2015

Nghe chứng minh là thấy khó nuốt rồi !

3 tháng 1 2016

Ta có: VT  = mn - mp - mn - mq = -mp - mq = -m(p + q) = VP

=> VT = VP (đpcm).

NV
14 tháng 1 2019

\(m.a^{m+n}+n.b^{m+n}=a^{m+n}+a^{m+n}+...+a^{m+n}+b^{m+n}+...+b^{m+n}\) ( m số hạng \(a^{m+n}\)\(n\) số hạng \(b^{m+n}\), tổng cộng có \(m+n\) số hạng)

\(\Rightarrow m.a^{m+n}+n.b^{m+n}\ge\left(m+n\right)\sqrt[m+n]{a^{m\left(m+n\right)}.b^{n\left(m+n\right)}}=\left(m+n\right)a^m.b^n\)

Tương tự ta có \(n.a^{m+n}+m.b^{m+n}\ge\left(m+n\right)a^n.b^m\)

Cộng với vế vế ta được:

\(\left(m+n\right)a^{m+n}+\left(m+n\right)b^{m+n}\ge\left(m+n\right)a^mb^n+\left(m+n\right)a^nb^m\)

\(\Rightarrow a^{m+n}+b^{m+n}\ge a^mb^n+a^nb^m\)

NV
25 tháng 8 2019

Cái đầu tiên lần lượt ghép nhóm 3 lại là được mà, tưởng đến đó tự làm tiếp được chứ

\(=x^2\left(x^2-x-m\right)+x\left(x^2-x-m\right)-\left(m-1\right)\left(x^2-x-m\right)\)

Câu tiếp thì 3 cái đầu là hằng đẳng thức

\(=\left(x^2+2x\right)^2+m\left(x^2+2x\right)+2m\)

Đặt ẩn phụ đưa về bậc 2

//Pt bậc 4 để giải được thì chỉ có vài loại cơ bản: đối xứng, đặt ẩn phụ đưa về bậc 2, tách thành nhân tử của 2 pt bậc 2.

Câu 2 thì dễ rồi, nhìn hệ số đoán ngay được nó là dạng pt đặt ẩn phụ

Câu 1 thì khuyết bậc 3 nên gần như ko thể đặt ẩn phụ, vậy nó là dạng tách nhân tử \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Do khuyết bậc 3 nên \(a=-c\), thử với trường hợp đơn giản nhất:

\(\left(x^2-x+a\right)\left(x^2+x+b\right)\)

Nhân phá ra, đồng nhất hệ số với pt ban đầu là tìm được a;b dễ dàng

Sau khi biết được nhân tử rồi thì giả bộ tách như pro thôi, chứ tự nhiên thì ko thể tách suông được ra đâu, đau não lắm :(

30 tháng 8 2019

Nguyễn Thị Ngọc Thơ tại em thấy chị hay dùng acc phụ kia.. ít thấy chị dùng acc chính để cmt:D