Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu x,y cùng chẵn thì Q chẵn
Lúc đó P.Q chẵn
+) Nếu x chẵn, y lẻ thì 5x + y + 1 chẵn nên P.Q chẵn
+) Nếu x lẻ, y chẵn thì 5x + y + 1 chẵn nên P.Q chẵn
Nếu m,n cùng chẵn
⇒ Q chẵn
⇒ P.Qchẵn
Nếu m,ncùng lẽ
⇒ Q chẵn
⇒ P.Q chẵn
Nếu m,n có tính chẵn lẻ khác nhau
⇒ P chẵn
⇒ P.Q chẵn
Ta có: \(x+y=m+n\Rightarrow n=x+y-m\)
\(\Rightarrow S=x^2+y^2+m^2+\left(x+y-m\right)^2\)
\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)
\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)
\(=x^2+y^2+m^2+x^2+y^2+m^2+2xy-2mx-2my\)
\(=\left(x^2+2xy+y^2\right)+\left(m^2-2mx+x^2\right)+\left(m^2-2my+y^2\right)\)
\(=\left(x+y\right)^2+\left(m-x\right)^2+\left(m-y\right)^2\)
Vì x, y, m, n \(\in\) Z nên x + y; m - x; m - y là số nguyên
Vậy S luôn bằng tổng các bình phương của 3 số nguyên
Ta có \(\left|x-y\right|\) cùng tính chẵn lẻ với \(x-y\)
\(3\left|y-z\right|\) cùng tính chẵn lẻ với \(3\left(y-z\right)\)
\(5\left(z-x\right)\) cùng tính chẵn lẻ với \(5\left(z-x\right)\)
\(\Rightarrow\) Vế trái cùng tính chẵn lẻ với \(x-y+3\left(y-z\right)+5\left(z-x\right)=2\left(y+z-2x\right)\)
\(\Rightarrow\) Vế trái luôn chẵn, mà vế phải lẻ
\(\Rightarrow\) Không tồn tại x;y;z nguyên thỏa mãn pt