Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
Vì \(x,y>0\) nên theo bất đẳng thức Cô-si ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\). Dấu "=" xảy ra <=> x = y
Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=a\left(a\ge2\right)\Rightarrow a^2=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\)
Bpt \(\Leftrightarrow a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)(luôn đúng vì \(a\ge2\))
Dấu "=" xảy ra <=> a = 2 <=> x = y
\(Q=\dfrac{x^3}{y+z}+\dfrac{y^3}{x+z}+\dfrac{z^3}{x+y}\)
\(Q=\dfrac{x^4}{xy+xz}+\dfrac{y^4}{xy+zy}+\dfrac{z^4}{xz+yz}\)
\(Q\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+xz+xy+zy+xz+yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(xy+yz+xz\right)}\)(svac-xo)
Lại có:\(x^2+y^2+z^2\ge xy+yz+zx\)(tự cm)
\(\Rightarrow Q\ge\dfrac{x^2+y^2+z^2}{2}\)
Mặt khác:\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge36\)(tự cm)
\(\Rightarrow x^2+y^2+z^2\ge12\)
\(\Rightarrow Q\ge\dfrac{12}{2}=6\)
Vậy MINQ=6<=>x=y=z=2
Ta có: \((\dfrac{x^3}{y+z}+\dfrac{y+z}{x})+\left(\dfrac{y^3}{x+z}+\dfrac{x+z}{y}\right)+\left(\dfrac{z^3}{x+y}+\dfrac{x+y}{z}\right)\ge2\sqrt{\dfrac{x^3\left(y+z\right)}{\left(y+z\right)x}}+2\sqrt{\dfrac{y^3\left(x+z\right)}{\left(x+z\right)y}}+2\sqrt{\dfrac{z^3\left(x+y\right)}{\left(x+y\right)z}}=2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=2\left(x+y+z\right)\ge2.6=12\)
(Bất đẳng thức cauchy)
mà \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{x}{y}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{y}{z} \)
\(=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge2\sqrt{\dfrac{yx}{xy}}+2\sqrt{\dfrac{zx}{xz}}+2\sqrt{\dfrac{zy}{yz}}=2+2+2=6\) (Bất đẳng thức cauchy)
\(\Rightarrow P\ge12-6=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = y = z = 2
Vậy GTNN của P = 6 \(\Leftrightarrow\)x = y = z = 2
a/\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{54}{2y}\)
\(\Rightarrow2y\cdot y=54\cdot3\Rightarrow2y^2=162\Rightarrow y^2=\dfrac{162}{2}=81\)
Mà y > 0 (gt) => \(y=\sqrt{81}=9\Rightarrow x=\dfrac{54}{9}=6\)
Vậy..............
b/ \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}\cdot25=\dfrac{25}{4}\\y^2=\dfrac{1}{4}\cdot9=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{25}{4}}=\pm\dfrac{5}{2}\\y=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\end{matrix}\right.\)
Vậy.............
c/ x/2 = y/3 => x/10 = y/15
y/5 = z/7 => y/15 = z/21
=> x/10 = y/15 = z/21
Áp dụng t/c của dãy tỉ số = nhau là ra....
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
AM-GM
\(\left(x-2\right)^2+\left(y-4\right)^2+\left(x+\dfrac{4}{x}\right)+\left(\dfrac{80}{y}+5y\right)+3\left(x+y\right)-20\ge2\sqrt{x.\dfrac{4}{x}}+2\sqrt{\dfrac{80}{y}.5y}+3.6-20=4+40+18-20=42\)
đẳng thức xảy ra khi x=2 ;y=4
CM cái gì mới đc