tìm số tự nhiên n để n+ 2 là ước của 6n + 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)
Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1
=> n=4 hoặc n^3+2n^2+6=0
=> n=4 ( vì n^3+2n^2+6 > 0 )
Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)
Vậy n = 4
k mk nha
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
Gọi ƯCLN\((21n+3,6n+4)\)là d. Ta có :
\(\hept{\begin{cases}21n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}126n+18⋮d\\126n+84⋮d\end{cases}}\)
\(\Rightarrow(126n+84)-(126n+18)⋮d\)
\(\Rightarrow66⋮d\)
\(\Rightarrow d\inƯ(66)\)
\(\Rightarrow21n+3⋮66\)
\(\Rightarrow21n+3-66⋮66\)
\(\Rightarrow21n-63⋮66\)
\(\Rightarrow21(n-3)⋮66\)
\(\Rightarrow n-3⋮66\)
\(\Rightarrow n-3=66k(k\inℕ)\)
\(\Rightarrow n=66k+3\)
Gọi Ước chung của 2n+1 và 6n+5 là k
Suy ra
2n+1 chia hết cho k
6n+5 chia hết cho k
Mà 2n+1 chia hết cho k nên 6n+3 cũng chia hết cho k
Ta có
6n+3 chia hết cho k
6n+5 chia hết cho k
Suy ra đc
3 chia hết cho k
5 chia hết cho k
Mà ƯCLN(3;5)=1
Nên ƯCLN(2n+1;6n+5)=1