Cho x, y là các số thõa mãn |x-3|+(y+4)2=0
Khi đó x+y=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu. Bạn viết lại đề cẩn thận, rõ ràng để mọi người hỗ trợ tốt hơn bạn nhé.
Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên
Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm
TH1: (2x-3)2=0 và |y-2|=1
\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)
Ta không xét đến |y-2|=1 nữa!
TH2: (2x-3)2=1 và |y-2|=0
Vậy có 2 cặp x;y thỏa mãn là .........................
\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)
\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)
Với x=1,2=>có y=2
với 1,3 không có x thỏa mãn
KL:
(xy)=(1,2); (2,2)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)(1)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy\)
Vì \(x^2+y^2\)và x+y là các số nguyên => 2xy là số nguyên
\(x^4+y^4=\left(x^2+y^2\right)-2x^2y^2\)
Vì \(x^4+y^4,x^2+y^2\)là các số nguyên => \(2x^2y^2\)là số nguyên
=> \(\frac{1}{2}\left(2xy\right)^2\)là số nguyên=> \(\left(2xy\right)^2⋮2\)mà 2 là số nguyên tố => 2xy chia hết cho 2=> xy là số nguyên (2)
Từ (1), (2) và x+y là số nguyên
=> x^3+y^3 cũng là số nguyên.
1)
x;y tỉ lệ với 3;4
=> \(\frac{x}{3}=\frac{y}{4}\)
=> \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{2x^2}{18}=\frac{y^2}{16}=\frac{2x^2+y^2}{18+16}=\frac{136}{34}=4\)
=> x2=4.9=36
y2=4.16=64
Vì x;y là các số nguyên dương => x=6 ; y=8
2)
\(\frac{x}{2}=\frac{y}{4}\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}\)
=> \(\frac{x^2}{4}.\frac{x^2}{4}=\frac{x^2}{4}.\frac{y^2}{16}\)
=> \(\frac{x^4}{16}=\frac{x^2.y^2}{64}=\frac{4}{64}=\frac{1}{16}\)
=> x4=1
=> x=1 ( vi x> 0)
=> y= 2
Ta có:
\(\frac{5}{x}=\frac{y}{-3}\)
<=>xy=-15
Mà x,y thuộc Z
=>(x;y)=(-3;5);(3;-5)(5;-3)(-5;3)(15;-1)(-15;1)(1;-15)(-1;15)
Từ đó ta lần lượt xét các hiệu của x-y
=>giá trị lớn nhất của x-y là 16<=>x=15;y=-1 và x=1;y=-15
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath