Cho hàm số y=x3-3x2+4 có đồ thị (C) . Gọi d là đường thẳng qua I(1; 2) với hệ số góc k . Có bao nhiêu giá trị nguyên của k để d cắt (C) tại ba điểm phân biệt I, A, B sao cho I là trung điểm của đoạn thẳng AB là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D.
Phương trình đường thẳng d có hệ số góc k và đi qua I(1; 2) là d: y = k(x - 1) + 2.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:
Để d cắt (C) tại ba điểm phân biệt ⇔ Phương trình (*) có hai nghiệm phân biệt x1; x2 khác 1.
Hơn nữa theo Viet ta có
nên I là trung điểm AB.
Vậy chọn k > -3, hay k ∈ (-3;+∞).

Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1) hay
Kx- y+k=0 .
Phương trình hoành độ giao điểm của C và d là:
x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0
D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1
⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠ 9
Khi đó g( x) =0 khi x=2- k ; x = 2 + k Vậy các giao điểm của hai đồ thị lần lượt là
A ( - 1 ; 0 ) ; B ( 2 - k ; 3 k - k k ) ; C ( 2 + k ; 3 k + k k ) .
Tính được
B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .
Khi đó
S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .
Vậy k= 1 thỏa yêu cầu bài toán.
Chọn C.

Đáp án C
Ta có y ' = 3 x 2 − 6 x chia y cho y' ta được y = 1 3 x − 1 y ' − 2 x + 2 nên đường thẳng d có PT: y = − 2 x + 2 . Để d / / Δ ⇔ 2 m = − 2 ⇒ m = − 1

Chọn A
y ' = 3 x 2 - 6 x - 9 , y ' ' = 6 x - 6
Do đồ thị hàm số có hai điểm cực trị là A(-1;9) và B(3;-23).
Phương trình đường thẳng đi qua hai điểm cực trị là:

Chọn D
Cách 1: Ta có y ’ = 3 x 2 - 6 x - 6 ; y ” = 6 x - 6
Do đó đồ thị hàm số có điểm cực trị là A ( 1 + 3 ; - 6 3 ) và B ( 1 - 3 ; 6 3 ) .
Phương trình đường thẳng đi qua hai điểm cực trị là:
Cách 2: Ta có:
Gọi x 1 , x 2 là nghiệm của phương trình y ’ ( x ) = 3 x 2 - 6 x - 6 = 0 . Khi đó ta có A ( x 1 , y ( x 1 ) ) , B A ( x 2 , y ( x 2 ) ) là hai cực trị của đồ thị hàm số C với y ' ( x 1 ) = y ' ( x 2 ) = 0 .
Do đó ta có:
Vậy A, B thuộc đường thẳng y= - 6x+6.
Phương trình đường thẳng d; y=k(x-1)+2.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:
x3-3x2+4= k(x-1)+2. Hay x3-3x2-kx+k+2= 0 (1)
⇔ ( x - 1 ) ( x 2 - 2 x - k - 2 ) = 0
( C) cắt d tại ba điểm phân biệt khi và chỉ khi phương trình có hai nghiệm phân biệt x1; x2 khác 1
⇔ ∆ ' g > 0 g ( 1 ) ≠ 0 ⇔ k + 3 > 0 - 3 - k ≠ 0 ⇔ k > - 3
Hơn nữa theo Viet ta có
x 1 + x 2 = 2 = 2 x I y 1 + y 2 = k ( x 1 + x 2 ) - 2 k + 4 = 4 = 2 y I
nên I là trung điểm AB.
Vậy chọn k> -3, hay k ∈ (-3; +∞). Do đó có vô số giá trị k nguyên thỏa mãn yêu cầu bài toán.
Chọn D.