Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng .Gọi S là tập hợp tất cả các số m sao cho đường thẳng d1và d2 chéo nhau và khoảng cách giữa chúng bằng 5 19 . Tính tổng các phần tử của S
A. 11
B. 12
C. 12
D. - 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Sử dụng công thức tính khoảng cách giữa hai đường thẳng chéo nhau
Cách giải:
lần lượt là các VTCP của d 1 và d 2
Ta có
Đáp án A
Phương pháp:
Tính khoảng cách từ 1 điểm M đến đường thẳng
là 1 điểm bất kì
Cách giải:
là một VTCP
Như vậy tập hợp các điểm M là elip có phương trình
Đáp án A
Phương pháp:
Tính khoảng cách từ 1 điểm M đến đường thẳng Δ: với u △ → là 1 VTCP của Δ và I ∈ Δ là 1 điểm bất kì
Cách giải: Đường thẳng Δ nhận là 1 VTCP
Gọi M(a;b;0) ∈ (Oxy) =>
Như vậy tập hợp các điểm M là elip có phương trình
Mặt cầu (S) có tâm I (1;0;-2) và bán kính R=2.
Đường thẳng d đi qua điểm N (2; 0; m-1) và có véc tơ chỉ phương
Điều kiện để d cắt (S) tại hai điểm phân biệt là d (I; (d))<R
Khi đó, tiếp diện của (S) tại A và B vuông góc với IA và IB nên góc giữa chúng là góc (IA;IB).
Vậy T= {-3;0}. Tổng các phần tử của tập hợp T bằng -3.
Đáp án B
Phương pháp: Sử dụng công thức tính khoảng cách giữa hai đường thẳng chéo nhau:
Với lần lượt là các VTCP của
Cách giải:
Ta có lần lượt là các VTCP của d1; d2
Ta có
Lấy