Tìm ƯC của các số sau
2n+7 và n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
1/2n+5va3n+7
goi UCLL(2n+5va3n+7)la d ta co
3/ Gọi d là ước chung của n + 3 và 2n + 5
Suy ra: 2(n + 3) - (2n + 5) chia hết cho d
2n + 6 - 2n - 5 = 1 chia hết cho d nên d = 1
Vậy UC(n + 3, 2n + 5) = 1
b) Gọi d là ước chung của 2n và 2n + 2.
Suy ra \(\hept{\begin{cases}2n⋮d\\2n+2⋮d\end{cases}}\).
Vì vậy \(2n+2-2n⋮d\) hay \(2⋮d\).
Vậy d = { 1; 2}.
Giải :
a ) Ta có :
\(51=3.17\)
\(76=2^2.19\)
\(\RightarrowƯC\left(51;76\right)=1\)
b ) Gọi \(Ư\left(2n,2n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n⋮7\\2n+2⋮7\end{cases}\Rightarrow\left(2n+2\right)-2n⋮d\Rightarrow2⋮d}\)hay \(d\inƯ\left(2\right)\)
Ta có : \(Ư\left(2\right)=\left\{1;2\right\}\)
Vậy \(ƯC\left(2n,2n+2\right)=\left\{1;2\right\}\)
gọi UCLN(n+3;2n+5) là d
ta có :
n+3 chia hết cho d=>2(n+3) chia hết cho d=>2n+6 chia hết cho d
2n+5 chia hết cho d
=>(2n+6)-(2n+5) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+3;2n+5)=1
=>UC(n+3;2n+5)={1;-1}
bạn ơi bài làm như sau :
mình là đội tuyển toán lớp 7 rùi nhưng nhớ bài này lém :
Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z )
=> + ) n+3 chia hết cho d hay 2.(n+3) chia hết cho d
+) 2n+5 chia hết cho d
=> 2(n+3) - (2n +5) chia hết cho d
<=> 2n+6 -2n-5 chia hết cho d
<=> 1 chia hết cho d => d thuộc { 1 : -1 }
Nhớ sử dụng kí hiệu nhá
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau