K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

M = ab - (ab + bc + ca) + (a + b + c) - 1

= -(bc + ca) + (a + b) + (c - 1) 

= -c(b + a) + (a + b) + (c - 1) 

= (a + b)(-c + 1) + (c - 1)

Thay c = 1 vào M

=> M = (a + b)(-1 + 1) + (1 - 1) = 0

Vậy M = 0 

30 tháng 10 2021

Kết quả = 0 nha. Bn thay c =1 r phá ngoặc là tính ra

AH
Akai Haruma
Giáo viên
12 tháng 6 2023

Lời giải:

$a+bc=a(a+b+c)+bc=(a+b)(a+c)$

Tương tự: $b+ca=(b+a)(b+c); c+ab=(c+a)(c+b)$

Do đó:

$P=\frac{b-c}{(a+b)(a+c)}+\frac{c-a}{(b+a)(b+c)}+\frac{a-b}{(c+a)(c+b)}$

$=\frac{(b-c)(b+c)+(c-a)(c+a)+(a-b)(a+b)}{(a+b)(b+c)(c+a)}$

$=\frac{b^2-c^2+c^2-a^2+a^2-b^2}{(a+b)(b+c)(c+a)}$

$=\frac{0}{(a+b)(b+c)(c+a)}=0$

 

17 tháng 9 2023

Ta có: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự: \(\left\{{}\begin{matrix}b^2+1=\left(a+b\right)\left(b+c\right)\\c^2+1=\left(c+a\right)\left(b+c\right)\end{matrix}\right.\)

=> \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mặt khác: \(a+b+c-abc=a\left(1-bc\right)+b+c\)

                \(=a\left(ab+ca\right)+b+c\)     (Vì ab+bc+ca=1)

               \(=\left(a^2+1\right)\left(b+c\right)\)

               \(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)    (Vì \(a^2+1=\left(a+b\right)\left(c+a\right)\))

\(T=1\)

NV
11 tháng 10 2020

\(P\ge\frac{1}{\sqrt{ab+bc+ca+c^2}}+\frac{1}{\sqrt{ab+bc+ca+c^2}}=\frac{2}{\sqrt{ab+bc+ca+c^2}}\)

\(P\ge\frac{2}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\frac{4\sqrt{2}}{2\sqrt{\left(a+c\right)\left(2b+2c\right)}}\ge\frac{4\sqrt{2}}{a+c+2b+2c}=\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(2;1;0\right)\)

20 tháng 7 2019

Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)

Áp dụng BĐT Cauchy-Schwarz dạng Engel;

\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)

Đẳng thức xảy ra khi a = b = c

20 tháng 7 2019

hay là có khi nào em xét dấu đẳng thức sai ko nhỉ? :))

NV
12 tháng 5 2021

Đề bài có nhầm lẫn gì ko nhỉ?

\(T=\dfrac{ab}{a^2+b^2+ab}+\dfrac{bc}{b^2+c^2+2bc}+\dfrac{ca}{c^2+a^2+ca}\le\dfrac{ab}{2ab+ab}+\dfrac{bc}{2bc+bc}+\dfrac{ca}{2ca+ca}=1\)

13 tháng 5 2021

kh bt nx

 

4 tháng 12 2017

\(\sum\dfrac{ab}{\sqrt{c+ab}}=\sum\dfrac{ab}{\sqrt{c\left(a+b+c\right)+ab}}=\sum\dfrac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{ab}{a+b}+\dfrac{ab}{a+c}\right)=\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

GTNN của P là \(\dfrac{1}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

24 tháng 12 2015

còn tick nữa tui đủ 145 mà ai kiết zợ

24 tháng 12 2015

bài này tôi có thể làm đc nhưng có điều bạn phải tick cho tối đa

24 tháng 7 2019

Ta có : \(\left\{{}\begin{matrix}a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\\b+ca=b\left(a+b+c\right)+ca=\left(b+c\right)\left(a+b\right)\\c+ab=c\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)

Từ đó ta có :

\(P=\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)}{\left(a+c\right)\left(b+c\right)}}\)

\(P=\Sigma\sqrt{\left(a+b\right)^2}\)

\(P=\Sigma\left(a+b\right)\)

\(P=2\left(a+b+c\right)\)

\(P=2\)

24 tháng 7 2019

sao a+bc=a(a+b+c)+bc vậy bạn

9 tháng 3 2017

\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)

\(P=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\dfrac{ab}{ac+bc+c^2+ab}}+\sqrt{\dfrac{bc}{a^2+ab+ac+bc}}+\sqrt{\dfrac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{a}{a+c}+\dfrac{b}{b+c}}{2}\\\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\\\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{c}{b+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\left(\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{a+c}{a+c}+\dfrac{b+c}{b+c}+\dfrac{a+b}{a+b}}{2}=\dfrac{3}{2}\)

\(\Rightarrow P\le\dfrac{3}{2}\)

Vậy \(P_{max}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

10 tháng 3 2017

cảm ơn nhìu nhá ^^