Tìm m để hàm số đồng biến
\(y=\left(m-1\right)x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến trên R thì \(m^2-4>0\)
=>\(m^2>4\)
=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)
=>\(m^2< 4\)
=>-2<m<2
a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến
⇔ 3m - 1 > 0
⇔ 3m > 1
⇔ m > 1313
Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến
b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến
⇔ 3m - 1 < 0
⇔ 3m < 1
⇔ m < 1313
Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến
c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:
3 = (3m - 1).2 + 2 (m ≠≠ 1313)
⇔ 3 = 6m - 2 + 2
⇔ 3 = 6m
⇔ m = 1212 (t/m)
Vậy m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)
\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)
\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)
\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt
Bài toán thỏa mãn khi: \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)
\(y=\left(m+4\right)x+m-1\left(1\right)\)
a) Hàm số (1) đồng biến
\(\Leftrightarrow m+4\) lớn hơn \(0\)
\(\Leftrightarrow m\) lớn hơn \(-4\)
b) Hàm số (1) nghịch biến
\(\Leftrightarrow m+4\) nhỏ hơn \(0\)
\(\Leftrightarrow m\) nhỏ hơn \(-4\)
(Điện thoại tôi không đánh dấu nhỏ lớn được)
a: \(y=-x^3+\left(m+2\right)x^2-3x\)
=>\(y'=-3x^2+2\left(m+2\right)x-3\)
=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(4m^2+16m+16-4\cdot9< =0\)
=>\(4m^2+16m-20< =0\)
=>\(m^2+4m-5< =0\)
=>\(\left(m+5\right)\left(m-1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)
=>-5<=m<=1
TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: \(y=x^3-3x^2+\left(1-m\right)x\)
=>\(y'=3x^2-3\cdot2x+1-m\)
=>\(y'=3x^2-6x+1-m\)
Để hàm số đồng biến trên R thì \(y'>=0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)
=>\(36-12\left(1-m\right)>=0\)
=>\(36-12+12m>=0\)
=>12m+24>=0
=>m+2>=0
=>m>=-2
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:
\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)
Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)
\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
y=(m−1)x+3y=(m-1)x+3
Hàm số là hàm số bậc nhất khi
m−1≠0m-1≠0
⇔m≠1⇔m≠1
Vậy m≠1m≠1 thì hàm số đã cho là hàm số bậc nhất
b,
y=(m−1)x+3y=(m-1)x+3
Hàm số đồng biến trên RR khi
m−1>0m-1>0
⇔m>1⇔m>1
Vậy với m>1m>1 thì hàm số đã cho đồng biến trên RR
c,
y=(m−1)x+3y=(m-1)x+3
Hàm số nghịch biến trên RR khi
m−1<0m-1<0
⇔m<1⇔m<1
Vậy với m<1m<1 thì hàm số đã cho nghịch biến trên R